Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau 999078, China.
ACS Nano. 2022 Sep 27;16(9):13728-13739. doi: 10.1021/acsnano.2c05244. Epub 2022 Aug 4.
Microrobot swarms have promising prospects in biomedical applications ranging from targeted cargo delivery to minimally invasive surgery. However, such potential is constrained by the small output force and low efficiency of the current microrobot swarms. To address this challenge, we report a tentacle-like reconfigurable microrobot swarm by programming paramagnetic microparticles into reconfigurable carpets with numerous cilia. This wirelessly controlled microrobot swarm is constructed a strong gradient magnetic field in combination with a programmable oscillating magnetic field. The gradient magnetic field is supplied by a permanent magnet, which enables fast formation of a microrobot swarm with powerful collective behaviors cooperative physical structures within the swarm. The oscillating magnetic field is produced by a custom-built electromagnetic coil system, which is adopted as an actuation device for conducting dexterous manipulation controllable oscillation motion. Using the proposed microrobot swarming strategy, a milligram-level magnetic carpet achieves a millinewton-level output force. By applying different types of magnetic fields, the magnetic carpet accomplishes dexterous manipulation tasks, lesion removal, and controllable drug diffusion with a high-efficiency response in microscale executions. The formation and control mechanisms of the microrobot swarm reported here provide a practical candidate for biomedical treatment.
机器人集群在生物医学应用中具有广阔的前景,从靶向货物输送到微创手术。然而,这种潜力受到当前机器人集群输出力小和效率低的限制。为了解决这一挑战,我们通过将顺磁微颗粒编程成具有众多纤毛的可重构地毯,报告了一种类似触手的可重构微机器人集群。这种无线控制的微机器人集群是通过组合强梯度磁场和可编程振荡磁场构建的。梯度磁场由永磁体提供,这使得快速形成具有强大集体行为和群内协同物理结构的微机器人集群成为可能。振荡磁场由定制的电磁线圈系统产生,该系统被用作执行灵巧操作和可控振荡运动的驱动装置。使用提出的微机器人集群策略,毫克级的磁性地毯可以实现毫牛级的输出力。通过施加不同类型的磁场,磁性地毯可以完成灵巧操作任务、病变清除和可控药物扩散,在微尺度执行中具有高效响应。这里报道的微机器人集群的形成和控制机制为生物医学治疗提供了一个实用的候选方案。