Fan Xinjian, Hu Qihang, Zhang Xin, Sun Lining, Yang Zhan
School of Mechanical and Electrical Engineering, Soochow University, No. 8, Jixue Road, Suzhou 215131, China.
Micromachines (Basel). 2022 Dec 29;14(1):89. doi: 10.3390/mi14010089.
Due to their fascinating solitary and collective behavior, photochemical microrobots have attracted extensive attention from researchers and have obtained a series of outstanding research progress in recent years. However, due to the limitation of using a single light source, the realization of reconfigurable and controllable motion behaviors of the photochemical microrobot is still facing a series of challenges. To release these restrictions, we reported a multi-light-field-coupling-based method for driving the photochemical microrobot or its swarm in a regulatable manner. Here, we first designed a control system for coupling multiple light sources to realize the programmable application of four light sources in different directions. Then a TiO2-based photochemical microrobot was prepared, with its surface electric field distribution under different lighting conditions estimated by modeling-based simulation, where the feasibility of regulating the microrobot's motion behavior via the proposed setup was verified. Furthermore, our experimental results show that under the action of the compound light fields, we can not only robustly control the motion behavior of a single TiO2 microrobot but also reconfigure its collective behaviors. For example, we realized the free switching of the single TiO2 microrobots' movement direction, and the controllable diffusion, aggregation, the locomotion and merging of TiO2 microrobot swarms. Our discovery would provide potential means to realize the leap-forward control and application of photochemical microrobots from individuals to swarms, as well as the creation of active materials and intelligent synthetic systems.
由于其迷人的单独和集体行为,光化学微型机器人近年来吸引了研究人员的广泛关注,并取得了一系列出色的研究进展。然而,由于使用单一光源的限制,光化学微型机器人可重构和可控运动行为的实现仍面临一系列挑战。为了消除这些限制,我们报道了一种基于多光场耦合的方法,用于以可调节的方式驱动光化学微型机器人或其群体。在此,我们首先设计了一个用于耦合多个光源的控制系统,以实现四个光源在不同方向上的可编程应用。然后制备了一种基于TiO₂的光化学微型机器人,通过基于建模的模拟估计了其在不同光照条件下的表面电场分布,验证了通过所提出的装置调节微型机器人运动行为的可行性。此外,我们的实验结果表明,在复合光场的作用下,我们不仅可以稳健地控制单个TiO₂微型机器人的运动行为,还可以重新配置其集体行为。例如,我们实现了单个TiO₂微型机器人运动方向的自由切换,以及TiO₂微型机器人群体的可控扩散、聚集、移动和合并。我们的发现将为实现光化学微型机器人从个体到群体的跨越式控制和应用,以及活性材料和智能合成系统的创建提供潜在手段。