Suppr超能文献

Modification of an arginine residue essential for the activity of NAD-malic enzyme from Ascaris suum.

作者信息

Rao G S, Kong C T, Benjamin R C, Harris B G, Cook P F

出版信息

Arch Biochem Biophys. 1987 May 15;255(1):8-13. doi: 10.1016/0003-9861(87)90288-8.

Abstract

Purified NAD-malic enzyme from Ascaris suum is rapidly inactivated by the arginine reagent, 2,3-butanedione, and this inactivation is facilitated by 30 mM borate. Determination of the inactivation rate as a function of butanedione concentration suggests a second-order process overall, which is first order in butanedione. A second-order rate constant of 0.6 M-1 s-1 at pH 9 is obtained for the butanedione reaction. The inactivation is reversed by removal of the excess reagent upon dialysis. The enzyme is protected against inactivation by saturating amounts of malate in the presence and absence of borate. The divalent metal Mg2+ affords protection in the presence of borate but has no effect in its absence. The nucleotide reactant NAD+ has no effect on the inactivation rate in either the presence or absence of borate. A dissociation constant of 24 mM is obtained for E:malate from the decrease in the inactivation rate as a function of malate concentration. An apparent Ki of 0.5 mM is obtained for oxalate (an inhibitor competitive vs malate) from E:Mg:oxalate while no significant binding is observed for oxalate using the butanedione modified enzyme. The pH dependence of the first-order rate of inactivation by butanedione gives a pKa of 9.4 +/- 0.1 for the residue(s) modified, and this pK is increased when NAD is bound. The arginine(s) modified is implicated in the binding of malate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验