IEEE J Biomed Health Inform. 2022 Nov;26(11):5695-5703. doi: 10.1109/JBHI.2022.3196631. Epub 2022 Nov 10.
Benefiting from social support in online health communities requires maintaining textual communication. Investigating the process and identifying successful patterns can guide devising interventions to help online support seekers. We propose new methods to investigate the relationship between support-seeking requests and response messages in an online drug recovery forum. We use LIWC2015 text analysis software to quantify the support-seeking messages and apply machine learning algorithms to code the amount of informational and emotional support in the responses. Our work has several findings regarding the language in request messages that would increase or decrease the chances of receiving more informational or emotional support in response. For example, expressions of positive emotions and self-reference in request messages were associated with receiving more emotional support, and messages that used words indicating close relationships received more informational support. These findings contribute to the current understanding of computer-mediated communication of social support in online health communities, identifying strategies to mobilize maximal social resources. Moreover, our proposed methods can be used in other studies to investigate the exchange of social support or similar topics on online platforms.
从在线健康社区中获得社会支持需要保持文本交流。研究这一过程并确定成功模式可以指导设计干预措施,以帮助在线支持寻求者。我们提出了新的方法来研究在线戒毒论坛中寻求支持的请求和响应消息之间的关系。我们使用 LIWC2015 文本分析软件来量化寻求支持的消息,并应用机器学习算法对响应中的信息和情感支持的数量进行编码。我们的工作在请求消息中的语言方面有几个发现,这些发现会增加或减少收到更多信息或情感支持的机会。例如,请求消息中表达积极情绪和自我参照与收到更多情感支持有关,而使用表示亲密关系的词语的消息则收到更多的信息支持。这些发现有助于当前对在线健康社区中社会支持的计算机中介交流的理解,确定了调动最大社会资源的策略。此外,我们提出的方法可以用于其他研究,以调查在线平台上社会支持或类似主题的交流。