Institute for Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
Biomacromolecules. 2022 Sep 12;23(9):3899-3908. doi: 10.1021/acs.biomac.2c00725. Epub 2022 Aug 5.
The biomolecular interaction of ligand-presenting switchable microgels is studied with respect to the polymer type, composition, and structure of the microgels. Monodisperse microgels are prepared through precipitation polymerization of -isopropylacrylamide (PNIPAM microgels) or oligo(ethylene glycol methacrylamide)s (POEGMA microgels) in the presence of crosslinkers or in their absence (self-crosslinked). Functionalization with mannose or biotin as model ligands and affinity measurements upon heating/cooling are conducted to obtain mechanistic insights into how the microgel phase transition affects the specific interactions. In particular, we are interested in adjusting the crosslinking, swelling degree, and ligand density of mannose-functionalized microgels to reversibly catch and release mannose binding by setting the temperature below or above the microgels' volume phase transition temperature (VPTT). The increased mannose density for collapsed microgels above the VPTT results in stronger binding. Detachment of by reswelling the microgels below the VPTT is achieved only for self-crosslinked microgels showing a stronger decrease in ligand density compared to microgels with dedicated crosslinkers. Owing to a reduced mannose density in the shell of POEGMA microgels, their binding was lower compared to PNIPAM microgels, as supported by ultraresolution microscopy. Importantly, an inverse temperature-controlled binding of microgels decorated with hydrophilic mannose and hydrophobic biotin ligands is observed. This indicates that hydrophobic ligands are inaccessible in the collapsed hydrophobic network above the VPTT, whereas hydrophilic mannose units are then enriched at the microgel-water interface and thus are more accessible.
配体呈现的开关微凝胶的生物分子相互作用研究了聚合物类型、组成和微凝胶的结构。通过在交联剂存在或不存在的情况下(自交联)进行 -异丙基丙烯酰胺(PNIPAM 微凝胶)或聚(乙二醇甲基丙烯酰胺)(POEGMA 微凝胶)的沉淀聚合制备单分散微凝胶。通过用甘露糖或生物素作为模型配体进行功能化以及在加热/冷却时进行亲和测量,以获得关于微凝胶相转变如何影响特定相互作用的机制见解。特别是,我们有兴趣调整甘露糖功能化微凝胶的交联度、溶胀度和配体密度,以便通过将温度设置在微凝胶体积相转变温度(VPTT)以下或以上来可逆地捕获和释放甘露糖结合物。在 VPTT 以上的塌陷微凝胶中增加甘露糖密度会导致更强的结合。通过将微凝胶在低于 VPTT 的温度下再溶胀来实现与结合物的分离,这仅适用于自交联微凝胶,与具有专用交联剂的微凝胶相比,其配体密度下降更强。由于 POEGMA 微凝胶的壳中甘露糖密度降低,与 PNIPAM 微凝胶相比,其与 结合较弱,这得到超分辨率显微镜的支持。重要的是,观察到带有亲水性甘露糖和疏水性生物素配体的微凝胶的逆温控结合。这表明疏水性配体在 VPTT 以上的塌陷疏水性网络中不可用,而亲水性甘露糖单元则在微凝胶-水界面处富集,因此更易接近。