Department of Energy Technology, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, Kenya; Department of Engineering and Industrial Design, Hochschule Magdeburg-Stendal, Breitscheidstr. 2, 39114 Magdeburg, Germany.
Department of Agriculture and Biosystems Engineering, Kenyatta University, P. O. Box 43844 - 00100, Nairobi, Kenya.
Bioresour Technol. 2022 Oct;361:127734. doi: 10.1016/j.biortech.2022.127734. Epub 2022 Aug 3.
Biomass gasification is recognized as a viable avenue to accelerate the sustainable production of hydrogen. In this work, a numerical simulation model of air gasification of rice husks is developed using the Aspen Plus to investigate the feasibility of producing hydrogen-rich syngas. The model is experimentally validated with rice husk gasification results and other published studies. The influence of temperature and equivalence ratio on the syngas composition, H yield, LHV, H/CO ratio, CGE, and PCG was studied. Furthermore, the synchronized effects of temperature and ER are studied using RSM to determine the operational point of maximizing H yield and PCG. The RSM analysis results show optimum performance at temperatures between 820 °C and 1090 °C and ER in the range of 0.06-0.10. The findings show that optimal operating conditions of the gasification system can be achieved at a more refined precision through simulations coupled with advanced optimization techniques.
生物质气化被认为是加速氢气可持续生产的可行途径。在这项工作中,使用 Aspen Plus 开发了一个稻壳空气气化的数值模拟模型,以研究生产富氢合成气的可行性。该模型通过稻壳气化结果和其他已发表的研究进行了实验验证。研究了温度和当量比对合成气成分、H 产量、低热值、H/CO 比、CGE 和 PCG 的影响。此外,还使用 RSM 研究了温度和 ER 的同步影响,以确定最大 H 产量和 PCG 的操作点。RSM 分析结果表明,在 820°C 至 1090°C 之间的温度和 0.06-0.10 的 ER 范围内,性能最佳。研究结果表明,通过模拟与先进的优化技术相结合,可以更精确地实现气化系统的最佳运行条件。