Suppr超能文献

ELIMINATOR:使用多系统网络和整数规划进行必需性分析。

ELIMINATOR: essentiality analysis using multisystem networks and integer programming.

机构信息

Intelligent Biodata Ltd, San Sebastian, Spain.

BMS Center for Innovation and Translational Research Europe (CITRE), A Bristol Myers Squibb Company, Seville, Spain.

出版信息

BMC Bioinformatics. 2022 Aug 6;23(1):324. doi: 10.1186/s12859-022-04855-z.

Abstract

A gene is considered as essential when it is indispensable for cells to grow and replicate in a certain environment. However, gene essentiality is not a structural property but rather a contextual one, which depends on the specific biological conditions affecting the cell. This circumstantial essentiality of genes is what brings the attention of scientist since we can identify genes essential for cancer cells but not essential for healthy cells. This same contextuality makes their identification extremely challenging. Huge experimental efforts such as Project Achilles where the essentiality of thousands of genes is measured together with a plethora of molecular data (transcriptomics, copy number, mutations, etc.) in over one thousand cell lines can shed light on the causality behind the essentiality of a gene in a given environment. Here, we present an in-silico method for the identification of patient-specific essential genes using constraint-based modelling (CBM). Our method expands the ideas behind traditional CBM to accommodate multisystem networks. In essence, it first calculates the minimum number of lowly expressed genes required to be activated by the cell to sustain life as defined by a set of requirements; and second, it performs an exhaustive in-silico gene knockout to find those that lead to the need of activating additional lowly expressed genes. We validated the proposed methodology using a set of 452 cancer cell lines derived from the Cancer Cell Line Encyclopedia where an exhaustive experimental large-scale gene knockout study using CRISPR (Achilles Project) evaluates the impact of each removal. We also show that the integration of different essentiality predictions per gene, what we called Essentiality Congruity Score, reduces the number of false positives. Finally, we explored our method in a breast cancer patient dataset, and our results showed high concordance with previous publications. These findings suggest that identifying genes whose activity is fundamental to sustain cellular life in a patient-specific manner is feasible using in-silico methods. The patient-level gene essentiality predictions can pave the way for precision medicine by identifying potential drug targets whose deletion can induce death in tumour cells.

摘要

当基因对于细胞在特定环境中生长和复制是不可或缺的时,它被认为是必需的。然而,基因的必需性不是结构性质,而是上下文性质,这取决于影响细胞的具体生物条件。正是基因的这种环境必需性引起了科学家的关注,因为我们可以识别出对癌细胞必需但对健康细胞非必需的基因。这种上下文的复杂性使得它们的识别极具挑战性。巨大的实验努力,如 Achilles 项目,其中数千个基因的必需性与大量分子数据(转录组学、拷贝数、突变等)一起在一千多个细胞系中进行测量,可以揭示在给定环境中基因必需性的因果关系。在这里,我们提出了一种使用基于约束的建模(CBM)识别患者特异性必需基因的计算方法。我们的方法扩展了传统 CBM 的思想,以适应多系统网络。本质上,它首先计算出细胞为了维持生命而激活所需的低表达基因的最小数量,这些基因是由一组要求定义的;其次,它执行全面的计算机基因敲除,以找到那些导致需要激活额外低表达基因的基因。我们使用来自癌症细胞系百科全书的 452 个癌细胞系集验证了所提出的方法,其中使用 CRISPR(Achilles 项目)进行了详尽的大规模基因敲除实验研究,以评估每个去除的影响。我们还表明,对每个基因进行不同必需性预测的整合,即我们所谓的必需性一致性得分,可以减少假阳性的数量。最后,我们在乳腺癌患者数据集上探索了我们的方法,我们的结果与以前的出版物高度一致。这些发现表明,使用计算方法以患者特异性的方式识别对维持细胞生命至关重要的基因是可行的。患者水平的基因必需性预测可以为精准医学铺平道路,通过识别潜在的药物靶点,其删除可以诱导肿瘤细胞死亡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验