Suppr超能文献

海洋生物科学驱动型数据仓库 CRITTERBASE。

CRITTERBASE, a science-driven data warehouse for marine biota.

机构信息

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.

Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstraße 231, 23129, Oldenburg, Germany.

出版信息

Sci Data. 2022 Aug 6;9(1):483. doi: 10.1038/s41597-022-01590-1.

Abstract

Data on marine biota exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. To address this challenge, we present CRITTERBASE, a publicly accessible data warehouse and interactive portal that currently hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data for 18,644 samples and 3,664 benthic taxa (2,824 of which at species level). These samples were collected by grabs, underwater imaging or trawls in Arctic, North Sea and Antarctic regions between the years 1800 and 2014. Data were collated from literature, unpublished data, own research and online repositories. All metadata and links to primary sources are included. We envision CRITTERBASE becoming a valuable and continuously expanding tool for a wide range of usages, such as studies of spatio-temporal biodiversity patterns, impacts and risks of climate change or the evidence-based design of marine protection policies.

摘要

海洋生物群的数据存在于多种格式和来源中,例如已发表的文献、数据存储库和未发表的材料。由于这种异质性,信息难以查找、访问和组合,严重阻碍了其在进一步科学分析中的再利用,以及未来几代人的长期可用性。为了解决这一挑战,我们提出了 CRITTERBASE,这是一个公开可访问的数据仓库和交互门户,目前为 18644 个样本和 3664 个底栖分类群(其中 2824 个在物种水平)提供经过质量控制和分类标准化的存在/缺失、丰度和生物量数据。这些样本是在 1800 年至 2014 年间在北极、北海和南极洲地区使用抓斗、水下成像或拖网采集的。数据来自文献、未发表的数据、自己的研究和在线存储库。所有元数据和到原始来源的链接都包含在内。我们设想 CRITTERBASE 将成为一个有价值的、不断扩展的工具,适用于广泛的用途,例如时空生物多样性模式研究、气候变化的影响和风险,或基于证据的海洋保护政策设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcaf/9357058/5e4a7ae4a9d9/41597_2022_1590_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验