Suppr超能文献

基于个体风险和复发管理重新思考乳腺癌随访。

Rethinking breast cancer follow-up based on individual risk and recurrence management.

机构信息

Department of Radiation Oncology, Santa Chiara Hospital, Trento, Italy.

Department of Radiation Oncology, University Hospital of Modena, Modena, Italy.

出版信息

Cancer Treat Rev. 2022 Sep;109:102434. doi: 10.1016/j.ctrv.2022.102434. Epub 2022 Jul 1.

Abstract

Current follow-up policies for early breast cancer aim to detect loco-regional recurrences and manage treatment-related adverse effects. Their "one size fits all" approach does not take into account differences in subtypes at initial diagnosis, individual prognosis and treatments received. They are derived from clinical trials conducted when early detection means - other than mammography - and treatment options were limited. Herein, we address the arguments for re-evaluating current breast cancer follow-up strategies starting from recent advances in breast cancer local and systemic treatments and discussing individual risk of recurrence prediction models, time-adapted imaging and biomarker assessment for disease diagnostic anticipation. This change in perspective would transform breast cancer follow-up into an integrated, multidisciplinary team medical practice. Hence we discuss the important role of patient-centered approaches, but also of general practitioners and other health professionals, in the final promotion of personalized surveillance programs and patient education.

摘要

目前早期乳腺癌的随访策略旨在检测局部区域复发并处理与治疗相关的不良反应。它们“一刀切”的方法并没有考虑到初始诊断时亚组的差异、个体预后和所接受的治疗。这些策略源自于早期检测手段(除了乳房 X 线摄影术之外)和治疗选择有限时进行的临床试验。在此,我们从乳腺癌局部和全身治疗的最新进展出发,讨论复发风险预测模型、适应时间的影像学和生物标志物评估用于疾病诊断预测,以此重新评估当前乳腺癌随访策略的理由。这种视角的转变将使乳腺癌随访成为一种综合的、多学科团队的医疗实践。因此,我们讨论了以患者为中心的方法的重要作用,但也讨论了全科医生和其他卫生专业人员在最终促进个性化监测计划和患者教育方面的重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验