Hyon Ju-Yong, Kim Min Woo, Hyun Kyung-A, Yang Yeji, Ha Seongmin, Kim Jee Ye, Kim Young, Park Sunyoung, Gawk Hogyeong, Lee Heaji, Lee Suji, Moon Sol, Han Eun Hee, Kim Jin Young, Yang Ji Yeong, Jung Hyo-Il, Kim Seung Il, Chung Young-Ho
Research Center for Digital Omics, Korea Basic Science Institute, Cheongju, Republic of Korea.
Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea.
J Extracell Vesicles. 2025 Jun;14(6):e70089. doi: 10.1002/jev2.70089.
We explored the diagnostic utility of tumor-derived extracellular vesicles (tdEVs) in breast cancer (BC) by performing comprehensive proteomic profiling on plasma samples from 130 BC patients and 40 healthy controls (HC). Leveraging a microfluidic chip-based isolation technique optimized for low plasma volume and effective contaminant depletion, we achieved efficient enrichment of tdEVs. Proteomic analysis identified 26 candidate biomarkers differentially expressed between BC patients and HCs. To enhance biomarker selection robustness, we implemented a hybrid machine learning framework integrating LsBoost, convolutional neural networks, and support vector machines. Among the identified candidates, four EV proteins. ECM1, MBL2, BTD, and RAB5C. not only exhibited strong discriminatory performance, particularly for triple-negative breast cancer (TNBC), but also demonstrated potential relevance to disease recurrence, providing prognostic insights beyond initial diagnosis. Receiver operating characteristic (ROC) curve analysis demonstrated high diagnostic accuracy with an area under the curve (AUC) of 0.924 for BC and 0.973 for TNBC, as determined by mass spectrometry. These findings were further substantiated by immuno assay validation, which yielded an AUC of 0.986 for TNBC. Collectively, our results highlight the potential of EV proteomics as a minimally invasive, blood-based platform for both accurate detection and recurrence risk stratification in breast cancer and its aggressive subtypes, offering promising implications for future clinical applications.
我们通过对130例乳腺癌(BC)患者和40例健康对照(HC)的血浆样本进行全面的蛋白质组分析,探索了肿瘤衍生细胞外囊泡(tdEVs)在乳腺癌中的诊断效用。利用基于微流控芯片的分离技术,该技术针对低血浆体积和有效去除污染物进行了优化,我们实现了tdEVs的高效富集。蛋白质组分析确定了26种在BC患者和HC之间差异表达的候选生物标志物。为了提高生物标志物选择的稳健性,我们实施了一个整合LsBoost、卷积神经网络和支持向量机的混合机器学习框架。在鉴定出的候选物中,四种细胞外囊泡蛋白,即细胞外基质蛋白1(ECM1)、甘露糖结合凝集素2(MBL2)、生物素硫醚合成酶(BTD)和RAB5C,不仅表现出强大的鉴别性能,特别是对三阴性乳腺癌(TNBC),而且还显示出与疾病复发的潜在相关性,为初始诊断之外的预后提供了见解。质谱分析确定,受试者工作特征(ROC)曲线分析显示出高诊断准确性,BC的曲线下面积(AUC)为0.924,TNBC为0.973。免疫分析验证进一步证实了这些发现,TNBC的AUC为0.986。总体而言,我们的结果突出了细胞外囊泡蛋白质组学作为一种微创、基于血液的平台在乳腺癌及其侵袭性亚型的准确检测和复发风险分层方面的潜力,为未来的临床应用提供了有希望的启示。