Department of Chemistry, University of California, Riverside, Riverside, California, USA.
Department of Chemistry, University of California, Riverside, Riverside, California, USA; Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California, USA.
J Biol Chem. 2022 Sep;298(9):102306. doi: 10.1016/j.jbc.2022.102306. Epub 2022 Aug 5.
In higher eukaryotes, mitochondria play multiple roles in energy production, signaling, and biosynthesis. Mitochondria possess multiple copies of mitochondrial DNA (mtDNA), which encodes 37 genes that are essential for mitochondrial and cellular function. When mtDNA is challenged by endogenous and exogenous factors, mtDNA undergoes repair, degradation, and compensatory synthesis. mtDNA degradation is an emerging pathway in mtDNA damage response and maintenance. A key factor involved is the human mitochondrial genome maintenance exonuclease 1 (MGME1). Despite previous biochemical and functional studies, controversies exist regarding the polarity of MGME1-mediated DNA cleavage. Also, how DNA sequence may affect the activities of MGME1 remains elusive. Such information is not only fundamental to the understanding of MGME1 but critical for deciphering the mechanism of mtDNA degradation. Herein, we use quantitative assays to examine the effects of substrate structure and sequence on the DNA-binding and enzymatic activities of MGME1. We demonstrate that MGME1 binds to and cleaves from the 5'-end of single-stranded DNA substrates, especially in the presence of 5'-phosphate, which plays an important role in DNA binding and optimal cleavage by MGME1. In addition, MGME1 tolerates certain modifications at the terminal end, such as a 5'-deoxyribosephosphate intermediate formed in base excision repair. We show that MGME1 processes different sequences with varying efficiencies, with dT and dC sequences being the most and least efficiently digested, respectively. Our results provide insights into the enzymatic properties of MGME1 and a rationale for the coordination of MGME1 with the 3'-5' exonuclease activity of DNA polymerase γ in mtDNA degradation.
在高等真核生物中,线粒体在能量产生、信号传递和生物合成中发挥多种作用。线粒体拥有多个线粒体 DNA(mtDNA)拷贝,其编码对线粒体和细胞功能至关重要的 37 个基因。当 mtDNA 受到内源性和外源性因素的挑战时,mtDNA 会经历修复、降解和补偿合成。mtDNA 降解是 mtDNA 损伤反应和维持的新兴途径。涉及的一个关键因素是人类线粒体基因组维持外切酶 1(MGME1)。尽管之前进行了生化和功能研究,但关于 MGME1 介导的 DNA 切割的极性仍存在争议。此外,DNA 序列如何影响 MGME1 的活性仍不清楚。这些信息不仅对理解 MGME1 至关重要,而且对破译 mtDNA 降解的机制也至关重要。在此,我们使用定量测定法研究了底物结构和序列对 MGME1 的 DNA 结合和酶活性的影响。我们证明 MGME1 结合并从单链 DNA 底物的 5'-端切割,特别是在存在 5'-磷酸的情况下,5'-磷酸在 DNA 结合和 MGME1 的最佳切割中发挥重要作用。此外,MGME1 可以容忍末端的某些修饰,例如碱基切除修复中形成的 5'-脱氧核糖磷酸中间产物。我们表明 MGME1 以不同的效率处理不同的序列,其中 dT 和 dC 序列分别是最有效地和最不易消化的序列。我们的结果为 MGME1 的酶学特性提供了深入的了解,并为 MGME1 与 DNA 聚合酶 γ 的 3'-5'外切酶活性在 mtDNA 降解中的协调提供了依据。