Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning, 121001, China.
College of Transportation, Ludong University, Yantai, Shandong, 264025, China.
Anal Chim Acta. 2022 Aug 15;1221:339927. doi: 10.1016/j.aca.2022.339927. Epub 2022 May 14.
The heat generated during operation of microelectronic devices often adversely affects product performance. A remedy for this problem can be through the incorporation of nanofluidic microchannel heat sinks. Advanced working fluids and channel structures can be used to improve the heat transfer performance of the microchannel heat sink. First, thermal resistance is treated as a single objective function, the geometry of the microchannel was optimized using a genetic algorithm. The flow and heat transfer characteristics of the optimized microchannel are analyzed. The effect of different nanofluid volume fractions and geometric parameters on the inlet and outlet pressure drop, flow resistance coefficient, substrate temperature, Nusselt number (Nu), and system thermal resistance in the fractal microchannel are investigated. The thermal resistance of Al2O3 nanofluid with a volume fraction of 5% is 12.5-14.7% lower than that of deionized water, and the microchannel substrate temperature is 6.26 °C lower than that of deionized water.
微电子器件运行过程中产生的热量往往会对产品性能产生不利影响。解决这个问题的一种方法是通过采用纳米流体微通道散热器。先进的工作流体和通道结构可以用来提高微通道散热器的传热性能。首先,将热阻视为单一的目标函数,使用遗传算法对微通道的几何形状进行了优化。分析了优化后的微通道的流动和传热特性。研究了不同纳米流体体积分数和几何参数对分形微通道进出口压降、流动阻力系数、基底温度、努塞尔数(Nu)和系统热阻的影响。体积分数为 5%的 Al2O3 纳米流体的热阻比去离子水低 12.5-14.7%,微通道基底温度比去离子水低 6.26°C。