Tahir Muhammad Teham, Anwar Shahzaib, Ahmad Naseem, Sattar Mariyam, Qazi Usama Waleed, Ghafoor Usman, Bhutta Muhammad Raheel
Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan.
Department of Aeronautics and Astronautics, Institute of Space Technology, Islamabad 44000, Pakistan.
Micromachines (Basel). 2023 Jul 23;14(7):1475. doi: 10.3390/mi14071475.
Microelectronic components are used in a variety of applications that range from processing units to smart devices. These components are prone to malfunctions at high temperatures exceeding 373 K in the form of heat dissipation. To resolve this issue, in microelectronic components, a cooling system is required. This issue can be better dealt with by using a combination of metal foam, heat sinks, and nanofluids. This study investigates the effect of using a rectangular-finned heat sink integrated with metal foam between the fins, and different water-based nanofluids as the working fluid for cooling purposes. A 3D numerical model of the metal foam with a BCC-unit cell structure is used. Various parameters are analyzed: temperature, pressure drop, overall heat transfer coefficient, Nusselt number, and flow rate. Fluid flows through the metal foam in a turbulent flow with a Reynold's number ranging from 2100 to 6500. The optimum fin height, thickness, spacing, and base thickness for the heat sink are analyzed, and for the metal foam, the material, porosity, and pore density are investigated. In addition, the volume fraction, nanoparticle material, and flow rate for the nanofluid is obtained. The results showed that the use of metal foam enhanced the thermal performance of the heat sink, and nanofluids provided better thermal management than pure water. For both cases, a higher Nusselt number, overall heat transfer coefficient, and better temperature reduction is achieved. CuO nanofluid and high-porosity low-pore-density metal foam provided the optimum results, namely a base temperature of 314 K, compared to 341 K, with a pressure drop of 130 Pa. A trade-off was achieved between the temperature reduction and pumping power, as higher concentrations of nanofluid provided better thermal management and resulted in a large pressure drop.
微电子元件应用于从处理单元到智能设备的各种领域。这些元件在超过373K的高温下容易因散热而出现故障。为了解决这个问题,在微电子元件中需要一个冷却系统。通过使用金属泡沫、散热器和纳米流体的组合可以更好地处理这个问题。本研究调查了使用鳍片间集成金属泡沫的矩形鳍片散热器以及不同的水基纳米流体作为冷却工作流体的效果。使用了具有体心立方晶胞结构的金属泡沫的三维数值模型。分析了各种参数:温度、压降、总传热系数、努塞尔数和流速。流体以雷诺数在2100至6500之间的湍流形式流过金属泡沫。分析了散热器的最佳鳍片高度、厚度、间距和基部厚度,对于金属泡沫,研究了材料、孔隙率和孔密度。此外,还获得了纳米流体的体积分数、纳米颗粒材料和流速。结果表明,使用金属泡沫提高了散热器的热性能,并且纳米流体比纯水提供了更好的热管理。对于这两种情况,都实现了更高的努塞尔数、总传热系数和更好的降温效果。与341K相比,氧化铜纳米流体和高孔隙率低孔密度金属泡沫提供了最佳结果,即基部温度为314K,压降为130Pa。在降温与泵送功率之间实现了权衡,因为更高浓度的纳米流体提供了更好的热管理并导致较大的压降。