Laboratory for the Design and Development of New Drugs and Biotechnological Innovation, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico.
IAS-5/INM-9, Computational Biomedicine, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany.
J Comput Aided Mol Des. 2022 Sep;36(9):653-675. doi: 10.1007/s10822-022-00470-5. Epub 2022 Aug 8.
Angiotensin-(1-7) re-balance the Renin-Angiotensin system affected during several pathologies, including the new COVID-19; cardiovascular diseases; and cancer. However, one of the limiting factors for its therapeutic use is its short half-life, which might be overcome with the use of dendrimers as nanoprotectors. In this work, we addressed the following issues: (1) the capacity of our computational protocol to reproduce the experimental structural features of the (hydroxyl/amino)-terminated PAMAM dendrimers as well as the Angiotensin-(1-7) peptide; (2) the coupling of Angiotensin-(1-7) to (hydroxyl/amino)-terminated PAMAM dendrimers in order to gain insight into the structural basis of its molecular binding; (3) the capacity of the dendrimers to protect Angiotensin-(1-7); and (4) the effect of pH changes on the peptide binding and covering. Our Molecular-Dynamics/Metadynamics-based computational protocol well modeled the structural experimental features reported in the literature and our double-docking approach was able to provide reasonable initial structures for stable complexes. At neutral pH, PAMAM dendrimers with both terminal types were able to interact stably with 3 Angiotensin-(1-7) peptides through ASP1, TYR4 and PRO7 key amino acids. In general, they bind on the surface in the case of the hydroxyl-terminated compact dendrimer and in the internal zone in the case of the amino-terminated open dendrimer. At acidic pH, PAMAM dendrimers with both terminal groups are still able to interact with peptides either internalized or in its periphery, however, the number of contacts, the percentage of coverage and the number of hydrogen bonds are lesser than at neutral pH, suggesting a state for peptide release. In summary, amino-terminated PAMAM dendrimer showed slightly better features to bind, load and protect Angiotensin-(1-7) peptides.
血管紧张素-(1-7) 可以平衡多种病理情况下的肾素-血管紧张素系统,包括新型 COVID-19;心血管疾病;和癌症。然而,其治疗用途的一个限制因素是半衰期短,这可以通过使用树状聚合物作为纳米保护剂来克服。在这项工作中,我们解决了以下问题:(1) 我们的计算方案是否有能力重现 (羟基/氨基) 端接 PAMAM 树状聚合物以及血管紧张素-(1-7) 肽的实验结构特征;(2) 将血管紧张素-(1-7) 与 (羟基/氨基) 端接 PAMAM 树状聚合物偶联,以深入了解其分子结合的结构基础;(3) 树状聚合物保护血管紧张素-(1-7) 的能力;(4) pH 值变化对肽结合和覆盖的影响。我们基于分子动力学/元动力学的计算方案很好地模拟了文献中报道的结构实验特征,我们的双对接方法能够为稳定的复合物提供合理的初始结构。在中性 pH 下,具有两种末端类型的 PAMAM 树状聚合物能够通过 ASP1、TYR4 和 PRO7 关键氨基酸稳定地与 3 个血管紧张素-(1-7) 肽相互作用。一般来说,在羟基端接的紧凑树状聚合物的情况下,它们在表面上结合,而在氨基端接的开放树状聚合物的情况下,它们在内部区域结合。在酸性 pH 下,具有两种末端基团的 PAMAM 树状聚合物仍然能够与内化或其周围的肽相互作用,但是,接触数量、覆盖率百分比和氢键数量都比中性 pH 下少,表明肽释放状态。总的来说,氨基端接的 PAMAM 树状聚合物显示出更好的结合、负载和保护血管紧张素-(1-7) 肽的特性。