Suppr超能文献

利用农业工业废料甘蔗废蜜生产透明质酸。

Hyaluronic acid production by utilizing agro-industrial waste cane molasses.

作者信息

Shukla Priya, Anand Shubhankar, Srivastava Pradeep, Mishra Abha

机构信息

School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.

出版信息

3 Biotech. 2022 Sep;12(9):208. doi: 10.1007/s13205-022-03265-5. Epub 2022 Aug 4.

Abstract

Hyaluronic acid is a polysaccharide endowed with distinctive biological and physiological competencies. Given its queer properties, hyaluronic acid has exclusive praxis in the cosmetics and medical industries. The surmounting demand for hyaluronic acid is the propulsion behind the necessity for finding the amenable ways for its production. Fermentation progression of is reckoned as the superlative prompt and ambient approach for hyaluronic acid fabrication. For the unabated advancements in the industrial production of hyaluronan, industrial byproducts utilization is a fateful stile. The recent perusal is to optimize the fermentation production conditions of hyaluronic acid using cane molasses (a byproduct of sugar production) as a carbon source. The impact of different ranges of temperatures (33-41 °C), pH (6-8), and agitation rates (100-250 rpm) on the production process was calibrated using RSM using CCD as a statistical modality. In a 3.7 L bioreactor, 3.31 g/L hyaluronic acid was achieved at 9.74 percent molasses, 36.2 °C, pH 6.46, and a 207 rpm agitation rate using a batch fermentation technique. With a pH of 7, HPLC was conducted at 25 °C using a C18 column at a rate of 0.8 ml/min, and the wavelength was determined using a UV detector. The average retention time was 2.202 min. The FT-IR spectrum's output was also observed, and it matched the standard hyaluronic acid well.

摘要

透明质酸是一种具有独特生物学和生理功能的多糖。鉴于其奇特的性质,透明质酸在化妆品和医疗行业有着独特的应用。对透明质酸日益增长的需求是寻找合适生产方法的背后驱动力。发酵过程被认为是生产透明质酸最快捷、最环保的方法。为了透明质酸工业生产的持续进步,利用工业副产品是一个关键步骤。最近的研究是使用甘蔗糖蜜(制糖的副产品)作为碳源来优化透明质酸的发酵生产条件。使用响应曲面法(RSM)并以中心复合设计(CCD)作为统计方式,校准了不同温度范围(33 - 41°C)、pH值(6 - 8)和搅拌速率(100 - 250转/分钟)对生产过程的影响。在一个3.7升的生物反应器中,采用分批发酵技术,在9.74%的糖蜜、36.2°C、pH值6.46和207转/分钟的搅拌速率下,获得了3.31克/升的透明质酸。在pH值为7时,于25°C使用C18柱,以0.8毫升/分钟的流速进行高效液相色谱(HPLC)分析,并用紫外检测器测定波长。平均保留时间为2.202分钟。还观察了傅里叶变换红外光谱(FT - IR)的输出结果,其与标准透明质酸匹配良好。

相似文献

1
Hyaluronic acid production by utilizing agro-industrial waste cane molasses.
3 Biotech. 2022 Sep;12(9):208. doi: 10.1007/s13205-022-03265-5. Epub 2022 Aug 4.
2
Improvement Production of Hyaluronic Acid by Streptococcus zooepidemicus in Sugarcane Molasses.
Appl Biochem Biotechnol. 2017 May;182(1):276-293. doi: 10.1007/s12010-016-2326-y. Epub 2016 Nov 30.
5
Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation.
Bioresour Technol. 2023 Jun;377:128896. doi: 10.1016/j.biortech.2023.128896. Epub 2023 Mar 16.
6
Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses.
Bioresour Technol. 2009 Jul;100(13):3403-9. doi: 10.1016/j.biortech.2009.02.032. Epub 2009 Mar 17.
7
Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses.
Carbohydr Polym. 2015 Sep 20;129:35-43. doi: 10.1016/j.carbpol.2015.04.033. Epub 2015 Apr 27.
8
Enhanced poly(L-malic acid) production from pretreated cane molasses by Aureobasidium pullulans in fed-batch fermentation.
Prep Biochem Biotechnol. 2016 Nov 16;46(8):798-802. doi: 10.1080/10826068.2015.1135464.
10
Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources.
Bioresour Technol. 2014 Feb;153:23-9. doi: 10.1016/j.biortech.2013.11.057. Epub 2013 Nov 27.

引用本文的文献

本文引用的文献

1
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology.
Carbohydr Polym. 2021 Jul 15;264:118015. doi: 10.1016/j.carbpol.2021.118015. Epub 2021 Apr 2.
6
High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum.
Biotechnol J. 2016 Mar;11(4):574-84. doi: 10.1002/biot.201500404. Epub 2016 Jan 27.
7
Purification and biocompatibility of fermented hyaluronic acid for its applications to biomaterials.
Biomater Res. 2014 Jun 13;18:6. doi: 10.1186/2055-7124-18-6. eCollection 2014.
8
Special role of corn flour as an ideal carbon source for aerobic denitrification with minimized nitrous oxide emission.
Bioresour Technol. 2015 Jun;186:44-51. doi: 10.1016/j.biortech.2015.03.046. Epub 2015 Mar 13.
9
Metabolic control of hyaluronan synthases.
Matrix Biol. 2014 Apr;35:8-13. doi: 10.1016/j.matbio.2013.10.002. Epub 2013 Oct 14.
10
Microbial production of hyaluronic acid: current state, challenges, and perspectives.
Microb Cell Fact. 2011 Nov 16;10:99. doi: 10.1186/1475-2859-10-99.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验