Rich Benjamin J, Spieler Benjamin O, Yang Yidong, Young Lori, Amestoy William, Monterroso Maria, Wang Lora, Dal Pra Alan, Yang Fei
Department of Radiation Oncology, University of Miami, Miami, FL, United States.
Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.
Front Oncol. 2022 Jul 22;12:929727. doi: 10.3389/fonc.2022.929727. eCollection 2022.
Respiratory motion of locally advanced non-small cell lung cancer (LA-NSCLC) adds to the challenge of targeting the disease with radiotherapy (RT). One technique used frequently to alleviate this challenge is an internal gross tumor volume (IGTV) generated from manual contours on a single respiratory phase of the 4DCT the aid of deformable image registration (DIR)-based auto-propagation. Through assessing the accuracy of DIR-based auto-propagation for generating IGTVs, this study aimed to identify erring characteristics associated with the process to enhance RT targeting in LA-NSCLC.
4DCTs of 19 patients with LA-NSCLC were acquired using retrospective gating with 10 respiratory phases (RPs). Ground-truth IGTVs (GT-IGTVs) were obtained through manual segmentation and union of gross tumor volumes (GTVs) in all 10 phases. IGTV auto-propagation was carried out using two distinct DIR algorithms for the manually contoured GTV from each of the 10 phases, resulting in 10 separate IGTVs for each patient per each algorithm. Differences between the auto-propagated IGTVs (AP-IGTVs) and their corresponding GT-IGTVs were assessed using Dice coefficient (DICE), maximum symmetric surface distance (MSSD), average symmetric surface distance (ASSD), and percent volume difference (PVD) and further examined in relation to anatomical tumor location, RP, and deformation index (DI) that measures the degree of deformation during auto-propagation. Furthermore, dosimetric implications due to the analyzed differences between the AP-IGTVs and GT-IGTVs were assessed.
Findings were largely consistent between the two algorithms: DICE, MSSD, ASSD, and PVD showed no significant differences between the 10 RPs used for propagation (Kruskal-Wallis test, > 0.90); MSSD and ASSD differed significantly by tumor location in the central-peripheral and superior-inferior dimensions ( < 0.0001) while only in the central-peripheral dimension for PVD ( < 0.001); DICE, MSSD, and ASSD significantly correlated with the DI (Spearman's rank correlation test, < 0.0001). Dosimetric assessment demonstrated that 79% of the radiotherapy plans created by targeting planning target volumes (PTVs) derived from the AP-IGTVs failed prescription constraints for their corresponding ground-truth PTVs.
In LA-NSCLC, errors in DIR-based IGTV propagation present to varying degrees and manifest dependences on DI and anatomical tumor location, indicating the need for personalized consideration in designing RT internal target volume.
局部晚期非小细胞肺癌(LA - NSCLC)的呼吸运动增加了放射治疗(RT)靶向该疾病的挑战。一种经常用于缓解这一挑战的技术是借助基于可变形图像配准(DIR)的自动传播,从4DCT的单个呼吸相位的手动轮廓生成内部大体肿瘤体积(IGTV)。通过评估基于DIR的自动传播生成IGTV的准确性,本研究旨在识别与该过程相关的误差特征,以增强LA - NSCLC的RT靶向性。
对19例LA - NSCLC患者进行4DCT扫描,采用回顾性门控技术,共10个呼吸相位(RPs)。通过手动分割并合并所有10个相位的大体肿瘤体积(GTV)获得真实IGTV(GT - IGTV)。对每个患者10个相位中手动勾勒的GTV,使用两种不同的DIR算法进行IGTV自动传播,每种算法为每个患者生成10个单独的IGTV。使用骰子系数(DICE)、最大对称表面距离(MSSD)、平均对称表面距离(ASSD)和体积百分比差异(PVD)评估自动传播的IGTV(AP - IGTV)与其相应的GT - IGTV之间的差异,并进一步研究其与解剖肿瘤位置、RP以及测量自动传播过程中变形程度的变形指数(DI)的关系。此外,评估了AP - IGTV与GT - IGTV之间分析差异所带来的剂量学影响。
两种算法的结果在很大程度上一致:用于传播的10个RPs之间,DICE、MSSD、ASSD和PVD均无显著差异(Kruskal - Wallis检验,> 0.90);MSSD和ASSD在中央 - 外周和上下维度上因肿瘤位置不同而有显著差异(< 0.0001),而PVD仅在中央 - 外周维度上有差异(< 0.001);DICE、MSSD和ASSD与DI显著相关(Spearman等级相关检验,< 0.0001)。剂量学评估表明,针对由AP - IGTV得出规划靶体积(PTV)制定的放射治疗计划中,79%未能满足其相应真实PTV的处方约束。
在LA - NSCLC中,基于DIR的IGTV传播误差程度各异,且表现出对DI和解剖肿瘤位置的依赖性,这表明在设计RT内部靶体积时需要个性化考虑。