Suppr超能文献

通过蛋白质水平的元组装和机器学习分析细菌肽的群落特异性功能景观

Profiling a Community-Specific Function Landscape for Bacterial Peptides Through Protein-Level Meta-Assembly and Machine Learning.

作者信息

Vajjala Mitra, Johnson Brady, Kasparek Lauren, Leuze Michael, Yao Qiuming

机构信息

School of Computing, University of Nebraska-Lincoln, Lincoln, NE, United States.

Nashville Biosciences, Nashville, TN, United States.

出版信息

Front Genet. 2022 Jul 22;13:935351. doi: 10.3389/fgene.2022.935351. eCollection 2022.

Abstract

Small proteins, encoded by small open reading frames, are only beginning to emerge with the current advancement of omics technology and bioinformatics. There is increasing evidence that small proteins play roles in diverse critical biological functions, such as adjusting cellular metabolism, regulating other protein activities, controlling cell cycles, and affecting disease physiology. In prokaryotes such as bacteria, the small proteins are largely unexplored for their sequence space and functional groups. For most bacterial species from a natural community, the sample cannot be easily isolated or cultured, and the bacterial peptides must be better characterized in a metagenomic manner. The bacterial peptides identified from metagenomic samples can not only enrich the pool of small proteins but can also reveal the community-specific microbe ecology information from a small protein perspective. In this study, metaBP (Bacterial Peptides for metagenomic sample) has been developed as a comprehensive toolkit to explore the small protein universe from metagenomic samples. It takes raw sequencing reads as input, performs protein-level meta-assembly, and computes bacterial peptide homolog groups with sample-specific mutations. The metaBP also integrates general protein annotation tools as well as our small protein-specific machine learning module metaBP-ML to construct a full landscape for bacterial peptides. The metaBP-ML shows advantages for discovering functions of bacterial peptides in a microbial community and increases the yields of annotations by up to five folds. The metaBP toolkit demonstrates its novelty in adopting the protein-level assembly to discover small proteins, integrating protein-clustering tool in a new and flexible environment of RBiotools, and presenting the first-time small protein landscape by metaBP-ML. Taken together, metaBP (and metaBP-ML) can profile functional bacterial peptides from metagenomic samples with potential diverse mutations, in order to depict a unique landscape of small proteins from a microbial community.

摘要

由小开放阅读框编码的小蛋白,只是随着当前组学技术和生物信息学的进步才刚刚开始出现。越来越多的证据表明,小蛋白在多种关键生物学功能中发挥作用,如调节细胞代谢、调控其他蛋白活性、控制细胞周期以及影响疾病生理学。在诸如细菌等原核生物中,小蛋白在其序列空间和功能组方面很大程度上尚未被探索。对于来自自然群落的大多数细菌物种,样本不易分离或培养,并且必须以宏基因组学的方式更好地表征细菌肽。从宏基因组样本中鉴定出的细菌肽不仅可以丰富小蛋白库,还可以从小蛋白的角度揭示群落特异性的微生物生态信息。在本研究中,metaBP(用于宏基因组样本的细菌肽)已被开发为一个综合工具包,用于从宏基因组样本中探索小蛋白世界。它以原始测序读数作为输入,进行蛋白水平的元组装,并计算具有样本特异性突变的细菌肽同源组。metaBP还整合了通用蛋白注释工具以及我们的小蛋白特异性机器学习模块metaBP-ML,以构建细菌肽的完整图谱。metaBP-ML在发现微生物群落中细菌肽的功能方面显示出优势,并将注释产量提高了多达五倍。metaBP工具包在采用蛋白水平组装来发现小蛋白、在RBiotools的新的灵活环境中整合蛋白聚类工具以及通过metaBP-ML首次呈现小蛋白图谱方面展示了其新颖性。总之,metaBP(和metaBP-ML)可以对来自宏基因组样本的具有潜在多样突变的功能性细菌肽进行分析,以便描绘微生物群落中小蛋白的独特图谱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de94/9354662/83a82ceb4363/fgene-13-935351-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验