Division of Applied Mathematics, Brown University, Providence, RI, USA.
Beetham Eye Institute, Joslin Diabetes Center, Department of Medicine and Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
Transl Vis Sci Technol. 2022 Aug 1;11(8):7. doi: 10.1167/tvst.11.8.7.
Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas.
AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training.
The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost.
We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification.
As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.
准确分割自适应光学扫描激光检眼镜(AOSLO)图像中的微动脉瘤(MAs)对于识别 MA 形态和评估 MA 内的血液动力学至关重要。在此,我们引入 AOSLO-net 从糖尿病视网膜的 AOSLO 图像中自动分割 MA。
AOSLO-net 由基于 UNet 的深度神经网络组成,其编码器为预训练的 EfficientNet。我们为 AOSLO 图像设计了定制的预处理和后处理策略,包括生成多通道图像、去噪、对比度增强、模型预测的集合和联合,以优化 MA 分割。AOSLO-net 使用 20 名患者 28 只眼的 87 个 MA 进行训练和测试,这些患者的糖尿病视网膜病变(DR)严重程度不同,这是最大的可用 AOSLO MA 检测数据集。为避免模型训练过程中的过拟合,我们通过翻转、旋转、缩放原始图像来扩充训练数据,以增加模型训练可用数据的多样性。
通过 AOSLO-net 的预测与眼科医生和熟练的受训者生成的 MA 掩模之间的良好一致性,证明了该模型的有效性。我们的结果表明,AOSLO-net 在准确性(例如,交并比和 Dice 评分)和计算成本方面均优于最先进的分割模型(nnUNet)。
我们证明了 AOSLO-net 可以从 AOSLO 图像中提供高质量的 MA 分割,从而实现正确的 MA 形态分类。
AI Translator