Yan Qi, Weeks Daniel E, Xin Hongyi, Swaroop Anand, Chew Emily Y, Huang Heng, Ding Ying, Chen Wei
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA.
Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA.
Nat Mach Intell. 2020 Feb;2(2):141-150. doi: 10.1038/s42256-020-0154-9. Epub 2020 Feb 14.
Both genetic and environmental factors influence the etiology of age-related macular degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by fundus images and recently developed machine learning methods can successfully predict AMD progression using image data. However, none of these methods have utilized both genetic and image data for predicting AMD progression. Here we jointly used genotypes and fundus images to predict an eye as having progressed to late AMD with a modified deep convolutional neural network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity phenotypes and fundus images available at baseline and follow-up visits over a period of 12 years. Our results showed that fundus images coupled with genotypes could predict late AMD progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We implemented our model in a cloud-based application for individual risk assessment.
遗传因素和环境因素都会影响年龄相关性黄斑变性(AMD)的病因,AMD是导致失明的主要原因。AMD的严重程度主要通过眼底图像来衡量,最近开发的机器学习方法可以利用图像数据成功预测AMD的进展。然而,这些方法都没有同时利用遗传数据和图像数据来预测AMD的进展。在此,我们使用经过改进的深度卷积神经网络(CNN),联合基因型和眼底图像来预测一只眼睛是否已进展为晚期AMD。我们总共使用了来自年龄相关性眼病研究(AREDS)的1351名受试者的31262张眼底图像和52个与AMD相关的基因变异,这些受试者在12年的基线和随访中都有疾病严重程度表型和眼底图像。我们的结果表明,眼底图像与基因型相结合可以预测晚期AMD的进展,曲线下平均面积(AUC)值为0.85(95%置信区间:0.83 - 0.86)。仅使用眼底图像的结果显示平均AUC为0.81(95%置信区间:0.80 - 0.83)。我们将我们的模型应用于基于云的应用程序中进行个体风险评估。