Department of Chemical Engineering, Stanford University, Stanford, CA 94305.
Department of Bioengineering, Stanford University, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2205848119. doi: 10.1073/pnas.2205848119. Epub 2022 Aug 8.
Tetrahydropapaverine (THP) and papaverine are plant natural products with clinically significant roles. THP is a precursor in the production of the drugs atracurium and cisatracurium, and papaverine is used as an antispasmodic during vascular surgery. In recent years, metabolic engineering advances have enabled the production of natural products through heterologous expression of pathway enzymes in yeast. Heterologous biosynthesis of THP and papaverine could play a role in ensuring a stable supply of these clinically significant products. Biosynthesis of THP and papaverine has not been achieved to date, in part because multiple pathway enzymes have not been elucidated. Here, we describe the development of an engineered yeast strain for de novo biosynthesis of THP. The production of THP is achieved through heterologous expression of two enzyme variants with activity on nonnative substrates. Through protein engineering, we developed a variant of -methylcoclaurine hydroxylase with activity on coclaurine, enabling de novo norreticuline biosynthesis. Similarly, we developed a variant of scoulerine 9--methyltransferase capable of -methylating 1-benzylisoquinoline alkaloids at the 3' position, enabling de novo THP biosynthesis. Flux through the heterologous pathway was improved by knocking out yeast multidrug resistance transporters and optimization of media conditions. Overall, strain engineering increased the concentration of biosynthesized THP 600-fold to 121 µg/L. Finally, we demonstrate a strategy for papaverine semisynthesis using hydrogen peroxide as an oxidizing agent. Through optimizing pH, temperature, reaction time, and oxidizing agent concentration, we demonstrated the ability to produce semisynthesized papaverine through oxidation of biosynthesized THP.
四氢原小檗碱 (THP) 和罂粟碱是具有临床重要作用的植物天然产物。THP 是阿曲库铵和顺式阿曲库铵药物生产中的前体,罂粟碱在血管手术中用作抗痉挛剂。近年来,代谢工程的进展使得通过在酵母中异源表达途径酶来生产天然产物成为可能。THP 和罂粟碱的异源生物合成可以在确保这些具有临床重要性的产品的稳定供应方面发挥作用。迄今为止,尚未实现 THP 和罂粟碱的生物合成,部分原因是尚未阐明多种途径酶。在这里,我们描述了一种用于从头生物合成 THP 的工程酵母菌株的开发。通过异源表达两种对非天然底物具有活性的酶变体来实现 THP 的生产。通过蛋白质工程,我们开发了一种对可可碱具有活性的 - 甲基原小檗碱羟化酶变体,从而能够从头生物合成非雷替林。同样,我们开发了一种能够在 3' 位对 1- 苄基异喹啉生物碱进行 - 甲基化的斯库林 9-- 甲基转移酶变体,从而能够从头生物合成 THP。通过敲除酵母多药耐药转运蛋白和优化培养基条件来提高异源途径的通量。总体而言,菌株工程将生物合成的 THP 浓度提高了 600 倍,达到 121 µg/L。最后,我们展示了使用过氧化氢作为氧化剂进行罂粟碱半合成的策略。通过优化 pH 值、温度、反应时间和氧化剂浓度,我们证明了通过生物合成的 THP 氧化生产半合成罂粟碱的能力。