CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India.
PLoS One. 2013 May 30;8(5):e65622. doi: 10.1371/journal.pone.0065622. Print 2013.
The benzylisoquinoline alkaloid papaverine, synthesized in low amount in most of the opium poppy varieties of Papaver somniferum, is used as a vasodilator muscle relaxant and antispasmodic. Papaverine biosynthesis remains controversial as two different routes utilizing either (S)-coclaurine or (S)-reticuline have been proposed with uncharacterized intermediate steps. In an attempt to elucidate papaverine biosynthesis and identify putative genes involved in uncharacterized steps, we carried out comparative transcriptome analysis of high papaverine mutant (pap1) and normal cultivar (BR086) of P. somniferum. This natural mutant synthesizes more than 12-fold papaverine in comparison to BR086. We established more than 238 Mb transcriptome data separately for pap1 and BR086. Assembly of reads generated 127,342 and 106,128 unigenes in pap1 and BR086, respectively. Digital gene expression analysis of transcriptomes revealed 3,336 differentially expressing unigenes. Enhanced expression of (S)-norcoclaurine-6-O-methyltransferase (6OMT), (S)-3'-hydroxy-N-methylcoclaurine 4'-O-methyltransferase (4'OMT), norreticuline 7-O-methyltransferase (N7OMT) and down-regulation of reticuline 7-O-methyltransferase (7OMT) in pap1 in comparison to BR086 suggest (S)-coclaurine as the route for papaverine biosynthesis. We also identified several methyltransferases and dehydrogenases with enhanced expression in pap1 in comparison to BR086. Our analysis using natural mutant, pap1, concludes that (S)-coclaurine is the branch-point intermediate and preferred route for papaverine biosynthesis. Differentially expressing methyltransferases and dehydrogenases identified in this study will help in elucidating complete biosynthetic pathway of papaverine. The information generated will be helpful in developing strategies for enhanced biosynthesis of papaverine through biotechnological approaches.
苯并异喹啉生物碱罂粟碱,在大多数罂粟属植物品种中少量合成,用作血管扩张剂、肌肉松弛剂和抗痉挛药。罂粟碱的生物合成仍然存在争议,因为已经提出了两种不同的途径,一种利用(S)-可卡因碱,另一种利用(S)-网状碱,中间步骤尚未确定。为了阐明罂粟碱的生物合成并鉴定参与未确定步骤的推定基因,我们对高罂粟碱突变体(pap1)和正常品种(BR086)进行了比较转录组分析。与 BR086 相比,这种天然突变体合成的罂粟碱超过 12 倍。我们分别为 pap1 和 BR086 建立了超过 238 Mb 的转录组数据。读取序列的组装分别在 pap1 和 BR086 中生成了 127342 个和 106128 个 unigenes。转录组数字基因表达分析显示 3336 个差异表达的 unigenes。与 BR086 相比,pap1 中(S)-诺可卡因-6-O-甲基转移酶(6OMT)、(S)-3'-羟基-N-甲基可卡因 4'-O-甲基转移酶(4'OMT)、诺瑞替林 7-O-甲基转移酶(N7OMT)的表达增强和瑞替林 7-O-甲基转移酶(7OMT)的表达下调表明,(S)-可卡因碱是罂粟碱生物合成的途径。我们还鉴定了几种甲基转移酶和脱氢酶,它们在 pap1 中的表达高于 BR086。与 BR086 相比,我们使用天然突变体 pap1 的分析得出结论,(S)-可卡因碱是罂粟碱生物合成的分支点中间产物和首选途径。本研究中鉴定的差异表达甲基转移酶和脱氢酶将有助于阐明罂粟碱的完整生物合成途径。所产生的信息将有助于通过生物技术方法开发增强罂粟碱生物合成的策略。