Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163.
Department of Biology, University of North Dakota, Grand Forks, ND 58202.
Proc Natl Acad Sci U S A. 2022 Aug 16;119(33):e2123097119. doi: 10.1073/pnas.2123097119. Epub 2022 Aug 8.
Targeting nuclear factor-kappa B (NF-κB) represents a highly viable strategy against chemoresistance in cancers as well as cell death. Ubiquitination, including linear ubiquitination mediated by the linear ubiquitin chain assembly complex (LUBAC), is emerging as a crucial mechanism of overactivated NF-κB signaling. Ovarian tumor family deubiquitinase OTULIN is the only linear linkage-specific deubiquitinase; however, the molecular mechanisms of how it counteracts LUBAC-mediated NF-κB activation have been largely unknown. Here, we identify Lys64/66 of OTULIN for linear ubiquitination facilitated in a LUBAC-dependent manner as a necessary event required for OTULIN-LUBAC interaction under unstressed conditions, which becomes deubiquitinated by OTULIN itself in response to genotoxic stress. Furthermore, this self-deubiquitination of OTULIN occurs intermolecularly, mediated by OTULIN dimerization, resulting in the subsequent dissociation of OTULIN from the LUBAC complex and NF-κB overactivation. Oxidative stress induces OTULIN dimerization via cysteine-mediated covalent disulfide bonds. Our study reveals that the status of the physical interaction between OTULIN and LUBAC is a crucial determining factor for the genotoxic NF-κB signaling, as measured by cell survival and proliferation, while OTULIN loss of function resulting from its dimerization and deubiquitination leads to a dissociation of OTULIN from the LUBAC complex. Of note, similar molecular mechanisms apply to the inflammatory NF-κB signaling in response to tumor necrosis factor α. Hence, a fuller understanding of the detailed molecular mechanisms underlying the disruption of the OTULIN-LUBAC interaction will be instrumental for developing future therapeutic strategies against cancer chemoresistance and necroptotic processes pertinent to numerous human diseases.
靶向核因子-κB(NF-κB)代表了一种针对癌症化疗耐药性和细胞死亡的极具潜力的策略。泛素化,包括由线性泛素链组装复合物(LUBAC)介导的线性泛素化,正在成为过度激活的 NF-κB 信号的关键机制。卵巢肿瘤家族去泛素化酶 OTULIN 是唯一的线性连接特异性去泛素化酶;然而,其如何拮抗 LUBAC 介导的 NF-κB 激活的分子机制在很大程度上尚不清楚。在这里,我们确定 OTULIN 的 Lys64/66 用于线性泛素化,这是一个必要事件,需要在非应激条件下 LUBAC 依赖性方式促进 OTULIN-LUBAC 相互作用,而 OTULIN 本身在应对遗传毒性应激时会使其去泛素化。此外,OTULIN 的这种自我去泛素化是通过 OTULIN 二聚化介导的分子间发生的,导致 OTULIN 随后从 LUBAC 复合物和 NF-κB 过度激活中解离。氧化应激通过半胱氨酸介导的共价二硫键诱导 OTULIN 二聚化。我们的研究表明,OTULIN 和 LUBAC 之间物理相互作用的状态是遗传毒性 NF-κB 信号的一个关键决定因素,如细胞存活和增殖所衡量的,而 OTULIN 功能丧失导致其二聚化和去泛素化,导致 OTULIN 从 LUBAC 复合物中解离。值得注意的是,类似的分子机制适用于响应肿瘤坏死因子 α 的炎症性 NF-κB 信号。因此,深入了解破坏 OTULIN-LUBAC 相互作用的详细分子机制对于开发针对癌症化疗耐药性和与许多人类疾病相关的坏死性过程的未来治疗策略将是至关重要的。