Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011, United States.
Agronomy Department, Iowa State University, Ames, Iowa 50011, United States.
ACS Sens. 2022 Aug 26;7(8):2293-2302. doi: 10.1021/acssensors.2c00834. Epub 2022 Aug 8.
Methanol is a major volatile organic compound (VOC) emitted from plants. Methanol emission reflects indirect plant defense against insects, promotes cell-to-cell communication, and adapts plants to various environmental stresses. This paper reports a wearable plant sensor that can monitor methanol emission directly on the leaf of a plant under field conditions with low cost, high portability, and easy installation and use. The sensor technology eliminates the need for complex sampling, expensive instruments, and skilled operators for conventional gas chromatography-mass spectrometry. The sensor uses a composite of conducting polymer microcrystallites and platinum nanoparticles (PtNPs). The conducting poly(2-amino-1,3,4-thiadiazole) or poly(ATD) provides a high electrocatalytic activity with redox behavior. The modification of poly(ATD) with catalytic PtNPs enables efficient electrochemical oxidation of methanol at a specific potential. The advantages of poly(ATD) and PtNPs are synergized for high sensitivity and selectivity of the sensor for detecting methanol emissions with a sub-ppm limit of detection. Further, the infusion of a polymer electrolyte into the porous electrode of the sensor enables an all-solid-state VOC sensor. The sensor is integrated into a miniature gas collection chamber and capped with a hydrophobic gas diffusion membrane to minimize the influence of environmental humidity on the sensor performance. The sensor is installed on the leaf surface. In situ detection shows a difference in methanol emission between the lower and upper leaves of greenhouse maize plants. Further, under field conditions, the sensor reveals a noticeable difference in methanol emission concentration between two genotypes (Mo17 and B73 inbred lines) of maize plants. Therefore, the sensor will provide a promising new means of directly monitoring volatile emission of plants, which is a physiological phenotype as a function of genes and environment.
甲醇是植物排放的主要挥发性有机化合物(VOC)之一。甲醇排放反映了植物对昆虫的间接防御,促进了细胞间的通讯,并使植物适应各种环境胁迫。本文报道了一种可穿戴植物传感器,该传感器可以在田间条件下直接监测植物叶片上的甲醇排放,具有低成本、高便携性、易于安装和使用的特点。该传感器技术消除了对传统气相色谱-质谱联用仪进行复杂采样、昂贵仪器和熟练操作人员的需求。该传感器使用导电聚合物微晶体和铂纳米粒子(PtNPs)的复合材料。导电聚合物聚(2-氨基-1,3,4-噻二唑)或聚(ATD)提供了具有氧化还原行为的高电催化活性。聚(ATD)与催化 PtNPs 的修饰使得甲醇在特定电位下能够有效地进行电化学氧化。聚(ATD)和 PtNPs 的优势协同作用,使传感器对检测甲醇排放具有高灵敏度和选择性,检测限达到亚ppm 级。此外,将聚合物电解质注入传感器的多孔电极中,实现了全固态 VOC 传感器。该传感器集成到微型气体收集室中,并加盖疏水性气体扩散膜,以最大程度地减少环境湿度对传感器性能的影响。传感器安装在叶片表面。原位检测显示温室玉米植株下叶和上叶之间的甲醇排放存在差异。此外,在田间条件下,传感器揭示了两种玉米植株基因型(Mo17 和 B73 自交系)之间甲醇排放浓度的显著差异。因此,该传感器将为直接监测植物挥发性排放提供一种有前途的新方法,这是一种作为基因和环境函数的生理表型。