Suppr超能文献

利用遥感技术进行海洋水质监测:综述。

Ocean water quality monitoring using remote sensing techniques: A review.

机构信息

Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Technology and Society, Faculty of Engineering, Lund University, P.O. Box 118, 221 00, Lund, Sweden.

Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, Iran.

出版信息

Mar Environ Res. 2022 Sep;180:105701. doi: 10.1016/j.marenvres.2022.105701. Epub 2022 Aug 2.

Abstract

Ocean Water Quality (OWQ) monitoring provides insights into the quality of water in marine and near-shore environments. OWQ measurements can contain the physical, chemical, and biological characteristics of oceanic waters, where low OWQ values indicate an unhealthy ecosystem. Many parameters of water can be estimated from Remote Sensing (RS) data. Thus, RS offers significant opportunities for monitoring water quality in estuaries, coastal waterways, and the ocean. This paper reviews various RS systems and techniques for OWQ monitoring. It first introduces the common OWQ parameters, followed by the definition of the parameters and techniques of OWQ monitoring with RS techniques. In this study, the following OWQ parameters were reviewed: chlorophyll-a, colored dissolved organic matter, turbidity or total suspended matter/solid, dissolved organic carbon, Secchi disk depth, suspended sediment concentration, and sea surface temperature. This study presents a systematic analysis of the capabilities and types of spaceborne systems (e.g., optical and thermal sensors, passive microwave radiometers, active microwave scatterometers, and altimeters) which are commonly applied to OWQ assessment. The paper also provides a summary of the opportunities and limitations of RS data for spatial and temporal estimation of OWQ. Overall, it was observed that chlorophyll-a and colored dissolved organic matter are the dominant parameters applied to OWQ monitoring. It was also concluded that the data from optical and passive microwave sensors could effectively be applied to estimate OWQ parameters. From a methodological perspective, semi-empirical algorithms generally outperform the other empirical, analytical, and semi-analytical methods for OWQ monitoring.

摘要

海水水质(OWQ)监测可深入了解海洋和近岸环境中水质的特征。OWQ 测量可包含海洋水域的物理、化学和生物特性,其中低 OWQ 值表示生态系统不健康。许多水参数可以从遥感(RS)数据中估算。因此,RS 为监测河口、沿海水道和海洋的水质提供了重要机会。本文综述了用于 OWQ 监测的各种 RS 系统和技术。它首先介绍了常见的 OWQ 参数,然后介绍了使用 RS 技术监测 OWQ 参数的定义和技术。在本研究中,回顾了以下 OWQ 参数:叶绿素-a、有色溶解有机物、浊度或总悬浮物/固体、溶解有机碳、塞奇圆盘深度、悬浮泥沙浓度和海面温度。本文对常用于 OWQ 评估的星载系统(例如光学和热传感器、无源微波辐射计、主动微波散射计和测高仪)的功能和类型进行了系统分析。本文还总结了 RS 数据在时空估计 OWQ 方面的机遇和局限性。总体而言,观察到叶绿素-a 和有色溶解有机物是应用于 OWQ 监测的主要参数。还得出结论,光学和被动微波传感器的数据可有效应用于估计 OWQ 参数。从方法学的角度来看,半经验算法通常优于其他经验、分析和半分析方法,用于 OWQ 监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验