Sowrav Sheikh Fahim Faysal, Debsarma Sujit Kumar, Das Mohan Kumar, Ibtehal Khan Mohammad, Rahman Mahfujur, Hridita Noshin Tabassum, Broty Atika Afia, Hoque Muhammad Sajid Anam
National Oceanographic And Maritime Institute (NOAMI), Bangladesh.
Institute of Water and Flood Management (IWFM), Bangladesh University of Engineering and Technology (BUET), Bangladesh.
Heliyon. 2025 Feb 1;11(3):e42404. doi: 10.1016/j.heliyon.2025.e42404. eCollection 2025 Feb 15.
This study presents a semi-automated approach for assessing water quality in the Sundarbans, a critical and vulnerable ecosystem, using machine learning (ML) models integrated with field and remotely-sensed data. Key water quality parameters-Sea Surface Temperature (SST), Total Suspended Solids (TSS), Turbidity, Salinity, and pH-were predicted through ML algorithms and interpolated using the Empirical Bayesian Kriging (EBK) model in ArcGIS Pro. The predictive framework leverages Google Earth Engine (GEE) and AutoML, utilizing deep learning libraries to create dynamic, adaptive models that enhance prediction accuracy. Comparative analyses showed that ML-based models effectively captured spatial and temporal variations, aligning closely with field measurements. This integration provides a more efficient alternative to traditional methods, which are resource-intensive and less practical for large-scale, remote areas. Our findings demonstrate that this semi-automated technique is a valuable tool for continuous water quality monitoring, particularly in ecologically sensitive areas with limited accessibility. The approach also offers significant applications for climate resilience and policy-making, as it enables timely identification of deteriorating water quality trends that may impact biodiversity and ecosystem health. However, the study acknowledges limitations, including the variability in data availability and the inherent uncertainties in ML predictions for dynamic water systems. Overall, this research contributes to the advancement of water quality monitoring techniques, supporting sustainable environmental management practices and the resilience of the Sundarbans against emerging climate challenges.
本研究提出了一种半自动化方法,用于评估孙德尔本斯这一关键且脆弱的生态系统中的水质,该方法使用了与实地数据和遥感数据相结合的机器学习(ML)模型。通过ML算法预测了关键水质参数——海表面温度(SST)、总悬浮固体(TSS)、浊度、盐度和pH值,并在ArcGIS Pro中使用经验贝叶斯克里金(EBK)模型进行插值。该预测框架利用谷歌地球引擎(GEE)和自动机器学习(AutoML),利用深度学习库创建动态、自适应模型,提高预测准确性。对比分析表明,基于ML的模型有效地捕捉了空间和时间变化,与实地测量结果密切吻合。这种整合为传统方法提供了一种更有效的替代方案,传统方法资源密集,在大规模偏远地区不太实用。我们的研究结果表明,这种半自动化技术是持续水质监测的宝贵工具,特别是在交通不便的生态敏感地区。该方法在气候适应能力和政策制定方面也有重要应用,因为它能够及时识别可能影响生物多样性和生态系统健康的水质恶化趋势。然而,该研究承认存在局限性,包括数据可用性的差异以及动态水系统ML预测中固有的不确定性。总体而言,这项研究有助于推动水质监测技术的发展,支持可持续环境管理实践以及孙德尔本斯应对新出现的气候挑战的适应能力。