Advanced Technology Group, GE Healthcare, Bangalore, India.
GE Healthcare, IMG-MICT-Engineering, Waukesha, United States of America.
Biomed Phys Eng Express. 2022 Aug 19;8(5). doi: 10.1088/2057-1976/ac87b4.
Low Performing Pixel (LPP)/bad pixel in CT detectors cause ring and streaks artifacts, structured non-uniformities and deterioration of the image quality. These artifacts make the image unusable for diagnostic purposes. A missing/defective detector pixel translates to a channel missing across all views in sinogram domain and its effect gets spill over entire image in reconstruction domain as artifacts. Most of the existing ring and streak removal algorithms perform correction only in the reconstructed image domain. In this work, we propose a supervised deep learning algorithm that operates in sinogram domain to remove distortions cause by the LPP. This method leverages CT scan geometry, including conjugate ray information to learn the interpolation in sinogram domain. While the experiments are designed to cover the entire detector space, we emphasize on LPPs near detector iso-center as these have most adverse impact on image quality specially if the LPPs fall on the high frequency region (bone-tissue interface). We demonstrated efficacy of the proposed method using data acquired on GE RevACT multi-slice CT system with flat-panel detector. Experimental results on head scans show significant reduction in ring artifacts regardless of LPP location in the detector geometry. We have simulated isolated LPPs accounting for 5% and 10% of total channels. Detailed statistical analysis illustrates approximately 5dB improvement in SNR in both sinogram and reconstruction domain as compared to classical bicubic and Lagrange interpolation methods. Also, with reduction in ring and streak artifacts, the perceptual image quality is improved across all the test images.
CT 探测器中的低性能像素(LPP)/坏像素会导致环形和条纹伪影、结构不均匀以及图像质量下降。这些伪影使得图像无法用于诊断目的。缺失/有缺陷的探测器像素会导致在正弦图域中的所有视图中都缺失一个通道,并且其影响会在重建域中作为伪影扩散到整个图像中。大多数现有的环形和条纹去除算法仅在重建图像域中执行校正。在这项工作中,我们提出了一种在正弦图域中运行的监督深度学习算法,以去除由 LPP 引起的失真。该方法利用 CT 扫描几何形状,包括共轭射线信息,在正弦图域中学习插值。虽然实验旨在覆盖整个探测器空间,但我们强调探测器等中心附近的 LPP,因为这些 LPP 对图像质量有最不利的影响,特别是如果 LPP 落在高频区域(骨组织界面)。我们使用配备平板探测器的 GE RevACT 多切片 CT 系统采集的数据来演示所提出方法的有效性。对头扫描的实验结果表明,无论 LPP 在探测器几何形状中的位置如何,环形伪影都有明显减少。我们已经模拟了占总通道 5%和 10%的孤立 LPP。详细的统计分析表明,与经典的双三次和拉格朗日插值方法相比,在正弦图和重建域中 SNR 分别提高了约 5dB。此外,随着环形和条纹伪影的减少,所有测试图像的感知图像质量都得到了提高。