Suppr超能文献

受伤前表现对于预测精英足球运动员跟腱断裂后比赛参与水平最为重要:使用机器学习分类器的研究。

Pre-injury performance is most important for predicting the level of match participation after Achilles tendon ruptures in elite soccer players: a study using a machine learning classifier.

机构信息

Department of Orthopaedic Surgery, Hospital de Sant'Ana, Rua de Benguela, 501, 2775-028, Parede, Portugal.

Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Knee Surg Sports Traumatol Arthrosc. 2022 Dec;30(12):4225-4237. doi: 10.1007/s00167-022-07082-4. Epub 2022 Aug 9.

Abstract

PURPOSE

Achilles tendon ruptures (ATR) are career-threatening injuries in elite soccer players due to the decreased sports performance they commonly inflict. This study presents an exploratory data analysis of match participation before and after ATRs and an evaluation of the performance of a machine learning (ML) model based on pre-injury features to predict whether a player will return to a previous level of match participation.

METHODS

The website transfermarkt.com was mined, between January and March of 2021, for relevant entries regarding soccer players who suffered an ATR while playing in first or second leagues. The difference between average minutes played per match (MPM) 1 year before injury and between 1 and 2 years after the injury was used to identify patterns in match participation after injury. Clustering analysis was performed using k-means clustering. Predictions of post-injury match participation were made using the XGBoost classification algorithm. The performance of this model was evaluated using the area under the receiver operating characteristic curve (AUROC) and Brier score loss (BSL).

RESULTS

Two hundred and nine players were included in the study. Data from 32,853 matches was analysed. Exploratory data analysis revealed that forwards, midfielders and defenders increased match participation during the first year after injury, with goalkeepers still improving at 2 years. Players were grouped into four clusters regarding the difference between MPMs 1 year before injury and between 1 and 2 years after the injury. These groups ranged between a severe decrease (n = 34; - 59 ± 13 MPM), moderate decrease (n = 75; - 25 ± 8 MPM), maintenance (n = 70; 0 ± 8 MPM), or increase (n = 30; 32 ± 13 MPM). Regarding the predictive model, the average AUROC after cross-validation was 0.81 ± 0.10, and the BSL was 0.12, with the most important features relating to pre-injury match participation.

CONCLUSION

Most players take 1 year to reach peak match participation after an ATR. Good performance was attained using a ML classifier to predict the level of match participation following an ATR, with features related to pre-injury match participation displaying the highest importance.

LEVEL OF EVIDENCE

I.

摘要

目的

跟腱断裂(ATR)是精英足球运动员的职业杀手,因为它们通常会降低运动表现。本研究对 ATR 前后的比赛参与情况进行了探索性数据分析,并评估了基于受伤前特征的机器学习(ML)模型的性能,以预测运动员是否会恢复到以前的比赛参与水平。

方法

在 2021 年 1 月至 3 月期间,从网站 transfermarkt.com 中挖掘了在第一或第二联赛中受伤的足球运动员的相关数据。使用受伤前 1 年和受伤后 1 至 2 年期间的平均每场比赛出场时间(MPM)差异来识别受伤后比赛参与模式。使用 K 均值聚类进行聚类分析。使用 XGBoost 分类算法对受伤后的比赛参与情况进行预测。使用接收者操作特征曲线(AUROC)下面积和 Brier 得分损失(BSL)评估该模型的性能。

结果

共纳入 209 名运动员,分析了 32853 场比赛的数据。探索性数据分析显示,前锋、中场和后卫在受伤后的第一年增加了比赛参与度,而守门员在两年后仍在提高。根据受伤前 1 年和受伤后 1 至 2 年 MPM 的差异,将运动员分为四组。这些组的范围在严重减少(n=34;-59±13 MPM)、中度减少(n=75;-25±8 MPM)、维持(n=70;0±8 MPM)或增加(n=30;32±13 MPM)之间。关于预测模型,交叉验证后的平均 AUROC 为 0.81±0.10,BSL 为 0.12,最重要的特征与受伤前的比赛参与度有关。

结论

大多数运动员在跟腱断裂后需要 1 年时间才能达到最高的比赛参与度。使用 ML 分类器预测跟腱断裂后的比赛参与水平取得了较好的效果,与受伤前比赛参与度相关的特征显示出最高的重要性。

证据水平

I.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d626/9360634/ad81cbbc64c6/167_2022_7082_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验