Suppr超能文献

基于康复期脑卒中患者的个体化预测小牛肌静脉血栓形成的列线图:一项回顾性研究。

A Nomogram for Individualized Prediction of Calf Muscular Vein Thrombosis in Stroke Patients During Rehabilitation: A Retrospective Study.

机构信息

74734School of Rehabilitation Medicine, Nanjing Medical University, Rehabilitation Medicine Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

74734Department of Ultrasonography, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Clin Appl Thromb Hemost. 2022 Jan-Dec;28:10760296221117991. doi: 10.1177/10760296221117991.

Abstract

To develop a nomogram for predicting calf muscle veins thrombosis (CMVT) in stroke patients during rehabilitation. We enrolled 360 stroke patients from the Rehabilitation Medicine Center from December 2015 to February 2019. Of the participants, 123 were included in the CMVT group and 237 in the no CMVT group. The least absolute shrinkage and selection operator (LASSO) regression model was applied to optimize feature selection for the model. Multivariable logistic regression analysis was applied to construct a predictive model. Performance and clinical utility of the nomogram were generated using the Harrell's concordance index, calibration curve, and decision curve analysis (DCA). Age, Brunnstrom stage (lower extremity), D-dimer, and antiplatelet therapy were associated with the occurrence of CMVT. The prediction nomogram showed satisfactory performance with a concordance index of 0.718 (95% CI: 0.663-0.773) in internal verification. The Hosmer-Lemeshow test,  = .217, suggested that the model was of goodness-of-fit. In addition, the DCA demonstrated that the CMVT nomogram had a good clinical net benefit. We developed a nomogram that could help clinicians identify high-risk groups of CMVT in stroke patients during rehabilitation for early intervention.

摘要

为了开发一种预测脑卒中患者康复过程中小腿肌静脉血栓形成(CMVT)的列线图。我们从 2015 年 12 月至 2019 年 2 月期间从康复医学中心招募了 360 名脑卒中患者。其中 123 例纳入 CMVT 组,237 例纳入无 CMVT 组。应用最小绝对收缩和选择算子(LASSO)回归模型对模型进行特征选择优化。采用多变量逻辑回归分析构建预测模型。采用 Harrell 的一致性指数、校准曲线和决策曲线分析(DCA)生成列线图的性能和临床实用性。年龄、Brunnstrom 分期(下肢)、D-二聚体和抗血小板治疗与 CMVT 的发生有关。该预测列线图在内部验证中具有令人满意的性能,一致性指数为 0.718(95%CI:0.663-0.773)。Hosmer-Lemeshow 检验,= 0.217,表明模型拟合良好。此外,DCA 表明 CMVT 列线图具有良好的临床净效益。我们开发了一种列线图,可以帮助临床医生识别康复过程中脑卒中患者中 CMVT 的高危人群,以便进行早期干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e81/9373120/ff379fa9e4dc/10.1177_10760296221117991-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验