Jiang Youli, Li Ao, Li Zhihuan, Li Yanfeng, Li Rong, Zhao Qingshi, Li Guisu
Department of Neurology, People's Hospital of Longhua, Shenzhen, China.
Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, China.
PLoS One. 2025 Mar 18;20(3):e0302676. doi: 10.1371/journal.pone.0302676. eCollection 2025.
Venous thromboembolism (VTE) is a life-threatening complication commonly occurring after acute ischemic stroke (AIS), with an increased risk of mortality. Traditional risk assessment tools lack precision in predicting VTE in AIS patients due to the omission of stroke-specific factors.
We developed a machine learning model using clinical data from patients with acute ischemic stroke (AIS) admitted between December 2021 and December 2023. Predictive models were developed using machine learning algorithms, including Gradient Boosting Machine (GBM), Random Forest (RF), and Logistic Regression (LR). Feature selection involved stepwise logistic regression and LASSO, with SHapley Additive exPlanations (SHAP) used to enhance model interpretability. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV).
Among the 1,632 AIS patients analyzed, 4.17% developed VTE. The GBM model achieved the highest predictive accuracy with an AUC of 0.923, outperforming other models such as Random Forest and Logistic Regression. The model demonstrated strong sensitivity (90.83%) and specificity (93.83%) in identifying high-risk patients. SHAP analysis revealed that key predictors of VTE risk included elevated D-dimer levels, premorbid mRS, and large vessel occlusion, offering clinicians valuable insights for personalized treatment decisions.
This study provides an accurate and interpretable method to predict VTE risk in patients with AIS using the GBM model, potentially improving early detection rates and reducing morbidity. Further validation is needed to assess its broader clinical applicability.
静脉血栓栓塞症(VTE)是急性缺血性卒中(AIS)后常见的一种危及生命的并发症,死亡风险增加。由于遗漏了卒中特异性因素,传统的风险评估工具在预测AIS患者的VTE方面缺乏精准性。
我们使用了2021年12月至2023年12月期间收治的急性缺血性卒中(AIS)患者的临床数据开发了一个机器学习模型。使用包括梯度提升机(GBM)、随机森林(RF)和逻辑回归(LR)在内的机器学习算法开发预测模型。特征选择涉及逐步逻辑回归和LASSO,使用夏普利值附加解释(SHAP)来增强模型的可解释性。使用受试者操作特征曲线下面积(AUC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)来评估模型性能。
在分析的1632例AIS患者中,4.17%发生了VTE。GBM模型的预测准确性最高,AUC为0.923,优于随机森林和逻辑回归等其他模型。该模型在识别高危患者方面表现出较高的敏感性(90.83%)和特异性(93.83%)。SHAP分析显示,VTE风险的关键预测因素包括D - 二聚体水平升高、病前改良Rankin量表(mRS)评分和大血管闭塞,为临床医生做出个性化治疗决策提供了有价值的见解。
本研究提供了一种使用GBM模型预测AIS患者VTE风险的准确且可解释的方法,可能提高早期检测率并降低发病率。需要进一步验证以评估其更广泛的临床适用性。