Suppr超能文献

决定钾离子电池中石墨负极循环稳定性的关键因素

Key Factor Determining the Cyclic Stability of the Graphite Anode in Potassium-Ion Batteries.

作者信息

Yuan Fu, Hu Junyang, Lei Yu, Zhao Rongyi, Gao Chongwei, Wang Huwei, Li Baohua, Kang Feiyu, Zhai Dengyun

机构信息

Shenzhen Geim Graphene Center, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.

出版信息

ACS Nano. 2022 Aug 23;16(8):12511-12519. doi: 10.1021/acsnano.2c03955. Epub 2022 Aug 9.

Abstract

Graphite is the most commonly used anode material for not only commercialized lithium-ion batteries (LIBs) but also the emerging potassium-ion batteries (PIBs). However, the graphite anode in PIBs using traditional dilute ester-based electrolyte systems shows obvious capacity fading, which is in contrast with the extraordinary cyclic stability in LIBs. More interestingly, the graphite in concentrated electrolytes for PIBs exhibits outstanding cyclic stability. Unfortunately, this significant difference in cycling performance has not raised concern up to now. In this work, by comparing the cyclic stability and graphitization degree of the graphite anode upon cycling, we reveal that the underlying mechanism of the capacity fading of the graphite anode in PIBs is not the larger volume expansion of graphite caused by the intercalation of potassium ions but the continual accumulation of the solid electrolyte interphase (SEI) on the surface of graphite. By X-ray photoelectron and nuclear magnetic resonance spectroscopies combined with chemical synthesis, it is concluded that the accumulation of the SEI may mainly come from the continual deposition of a kind of oligomer component, which blocks intercalation and deintercalation of potassium ions in graphite anodes. The designed SEI-cleaning experiment further verifies the above conclusion. This finding clarifies the crucial factor determining the cyclic stability of graphite and provides scientific guidance for application of the graphite anode for PIBs.

摘要

石墨不仅是商业化锂离子电池(LIBs)中最常用的负极材料,也是新兴的钾离子电池(PIBs)中最常用的负极材料。然而,在使用传统稀酯基电解质体系的PIBs中,石墨负极表现出明显的容量衰减,这与LIBs中出色的循环稳定性形成对比。更有趣的是,用于PIBs的浓电解质中的石墨表现出出色的循环稳定性。不幸的是,这种循环性能上的显著差异至今尚未引起关注。在这项工作中,通过比较循环过程中石墨负极的循环稳定性和石墨化程度,我们揭示了PIBs中石墨负极容量衰减的潜在机制不是钾离子嵌入导致的石墨更大体积膨胀,而是固体电解质界面(SEI)在石墨表面的持续积累。通过结合化学合成的X射线光电子能谱和核磁共振光谱,得出SEI的积累可能主要来自一种低聚物成分的持续沉积,它阻碍了钾离子在石墨负极中的嵌入和脱嵌。设计的SEI清洁实验进一步验证了上述结论。这一发现阐明了决定石墨循环稳定性的关键因素,并为PIBs石墨负极的应用提供了科学指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验