Suppr超能文献

还原氧化石墨烯材料的微观结构与钾存储行为的相关性。

Correlation between Microstructure and Potassium Storage Behavior in Reduced Graphene Oxide Materials.

机构信息

Shenzhen Key Laboratory for Graphene-Based Materials and Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Geim Graphene Center, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45578-45585. doi: 10.1021/acsami.9b14534. Epub 2019 Dec 2.

Abstract

Potassium-ion batteries (PIBs) are considered to be potential alternatives to the conventional lithium-ion batteries (LIBs) due to the similar working mechanism and abundant potassium (K) resource. However, it still remains challenging to directly apply commercial graphite anodes for PIBs owing to the large K ions, which may impede the electrochemical intercalation of K ions into the graphite interlayer and result in a poor cyclic stability and rate capability. Reduced graphene oxide (rGO) has shown remarkable electrochemical performance as an anode material for PIBs due to the fact that rGO possesses more active sites with an enlarged interlayer distance. Understanding the microstructure of rGO is crucial for optimizing its K-ion storage capabilities. Herein, it is revealed that the K-ion storage behavior of rGO is strongly dependent on the thermal treatment temperature on account of the difference in microstructure. rGO graphitized at 2500 °C exhibits a superior long-term cyclic stability for 2500 cycles due to the expanded interlayer distance and the unique graphite-like structure in a long range, enabling it to endure the huge volume change during uninterrupted K-ion intercalation/deintercalation processes.

摘要

钾离子电池(PIBs)由于其相似的工作机制和丰富的钾(K)资源,被认为是传统锂离子电池(LIBs)的潜在替代品。然而,由于较大的 K 离子,直接将商业石墨阳极应用于 PIBs 仍然具有挑战性,这可能会阻碍 K 离子电化学嵌入石墨层间,导致较差的循环稳定性和倍率性能。还原氧化石墨烯(rGO)作为 PIBs 的阳极材料表现出了显著的电化学性能,这是因为 rGO 具有更多的活性位点和扩大的层间距。了解 rGO 的微观结构对于优化其 K 离子存储能力至关重要。本文揭示了 rGO 的 K 离子存储行为强烈依赖于热处理温度,这是由于其微观结构的差异。在 2500°C 下石墨化的 rGO 表现出优异的 2500 次循环的长期循环稳定性,这是由于其层间距的扩大和长程范围内独特的类石墨结构,使其能够在不间断的 K 离子嵌入/脱嵌过程中承受巨大的体积变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验