Möllers Paul V, Wei Jimeng, Salamon Soma, Bartsch Manfred, Wende Heiko, Waldeck David H, Zacharias Helmut
Department of Physics and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
Chemistry Department, University of Pittsburgh, 15260 Pittsburgh, Pennsylvania, United States.
ACS Nano. 2022 Aug 23;16(8):12145-12155. doi: 10.1021/acsnano.2c02709. Epub 2022 Aug 9.
The chirality-induced spin selectivity (CISS) effect facilitates a paradigm shift for controlling the outcome and efficiency of spin-dependent chemical reactions, for example, photoinduced water splitting. While the phenomenon is established in organic chiral molecules, its emergence in chiral but inorganic, nonmolecular materials is not yet understood. Nevertheless, inorganic spin-filtering materials offer favorable characteristics, such as thermal and chemical stability, over organic, molecular spin filters. Chiral cupric oxide (CuO) thin films can spin polarize (photo)electron currents, and this capability is linked to the occurrence of the CISS effect. In the present work, chiral CuO films, electrochemically deposited on partially UV-transparent polycrystalline gold substrates, were subjected to deep-UV laser pulses, and the average spin polarization of photoelectrons was measured in a Mott scattering apparatus. By energy resolving the photoelectrons and changing the photoexcitation geometry, the energy distribution and spin polarization of the photoelectrons originating from the Au substrate could be distinguished from those arising from the CuO film. The findings reveal that the spin polarization is energy dependent and, furthermore, indicate that the measured polarization values can be rationalized as a sum of an intrinsic spin polarization in the chiral oxide layer and a contribution via CISS-related spin filtering of electrons from the Au substrate. The results support efforts toward a rational design of further spin-selective catalytic oxide materials.
手性诱导自旋选择性(CISS)效应有助于实现控制自旋依赖性化学反应的结果和效率的范式转变,例如光致水分解。虽然这种现象在有机手性分子中已得到证实,但其在无机、非分子手性材料中的出现尚不清楚。然而,无机自旋过滤材料相对于有机分子自旋过滤器具有诸如热稳定性和化学稳定性等有利特性。手性氧化铜(CuO)薄膜可以使(光)电子流发生自旋极化,这种能力与CISS效应的发生有关。在本工作中,将电化学沉积在部分紫外透明的多晶金基底上的手性CuO薄膜用深紫外激光脉冲照射,并在莫特散射装置中测量光电子的平均自旋极化。通过对光电子进行能量分辨并改变光激发几何结构,可以区分源自金基底的光电子和源自CuO薄膜的光电子的能量分布和自旋极化。研究结果表明,自旋极化与能量有关,此外,还表明所测得的极化值可以合理地解释为手性氧化物层中固有自旋极化与通过CISS相关的金基底电子自旋过滤的贡献之和。这些结果支持了进一步合理设计自旋选择性催化氧化物材料的努力。