Suppr超能文献

定制多功能肽水凝胶支架用于 CAR-T 细胞快速增殖和实体瘤免疫治疗。

Customized Multifunctional Peptide Hydrogel Scaffolds for CAR-T-Cell Rapid Proliferation and Solid Tumor Immunotherapy.

机构信息

Department of Clinical Laboratory, The First People's Hospital of Nantong, The Second Affiliated Hospital of Nantong University, 226001 Nantong, P. R. China.

Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, 510080 Guangzhou, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 24;14(33):37514-37527. doi: 10.1021/acsami.2c10727. Epub 2022 Aug 9.

Abstract

CAR-T-cell therapies must be expanded to obtain a large number of effector cells quickly, and the current technology cannot address this challenge. A longer operational time would lose or alter the function and phenotype of CAR-T cells in response to therapy, and it also causes a loss in the optimal treatment time for patients. At present, lower survival time and homing efficiency reduce the antitumor effect of CAR-T in vivo. But nobody has solved these two issues in one system, which has a similar microenvironment of lymphoid organs to activate/expand cell delivery for immunotherapy. Here, we generated artificial, customized immune cell matrix scaffolds based on a self-assembling peptide to preserve and augment the cell phenotype in light of the characteristics of CAR-T. The all-in-one nanoscale matrix scaffolds reduced the processing time of CAR-T to 3 days and resulted in over a 10-fold increase compared with the traditional protocol. The cells were combined to modulate mechanotransduction and chemical signals, and the mimic matrix scaffolds showed optimal stiffness and adhesive ligand density, thereby accelerating CAR-T-cell proliferation. Meanwhile, engineering CAR-T-secreted intrinsic PD-1 blocking single-chain variable fragments (scFv) further increased cell proliferation and cytotoxicity by resisting the self and tumor microenvironment in a paracrine and autocrine manner. Local delivery of CAR-T cells from the scaffolds significantly enabled long-term retention, suppressed tumor growth, and increased infiltration of effector T cells compared with traditional CAR-T treatment. The application of bioengineering and genetic engineering approaches has led to the development of rapid culture environments that can control matrix scaffold properties for CAR-T-cell and cancer immunotherapies.

摘要

CAR-T 细胞疗法必须进行扩展以快速获得大量效应细胞,而当前的技术无法解决这一挑战。较长的操作时间会导致 CAR-T 细胞在治疗过程中丢失或改变其功能和表型,并且还会导致患者失去最佳治疗时间。目前,较低的存活率和归巢效率降低了 CAR-T 在体内的抗肿瘤作用。但是,没有人能够在一个系统中同时解决这两个问题,该系统具有类似于淋巴器官的微环境,可以激活/扩展细胞输送以进行免疫治疗。在这里,我们基于自组装肽生成了人工定制的免疫细胞基质支架,以根据 CAR-T 的特性保留和增强细胞表型。这种一体式纳米级基质支架将 CAR-T 的处理时间缩短至 3 天,与传统方案相比增加了 10 倍以上。细胞被组合在一起以调节机械转导和化学信号,模拟基质支架显示出最佳的刚度和粘附配体密度,从而加速了 CAR-T 细胞的增殖。同时,工程 CAR-T 分泌的固有 PD-1 阻断单链可变片段(scFv)通过旁分泌和自分泌的方式抵抗自身和肿瘤微环境,进一步增加了细胞的增殖和细胞毒性。与传统的 CAR-T 治疗相比,支架中的 CAR-T 细胞的局部递送可显著实现长期保留、抑制肿瘤生长和增加效应 T 细胞的浸润。生物工程和遗传工程方法的应用导致了快速培养环境的发展,该环境可以控制 CAR-T 细胞和癌症免疫疗法的基质支架特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验