Suppr超能文献

基于 5 年数据库的中国老年住院患者认知障碍风险模型的建立与验证分析。

Development and validation of a risk model for cognitive impairment in the older Chinese inpatients: An analysis based on a 5-year database.

机构信息

Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

J Clin Neurosci. 2022 Oct;104:29-33. doi: 10.1016/j.jocn.2022.06.020. Epub 2022 Aug 6.

Abstract

Early diagnosis of cognitive impairment is important but difficult. Prediction models may work as an efficient way to identify high risk individuals for this disease. This study aimed to develop a simple and convenient model to identify high-risk individuals of cognitive impairment in the older Chinese inpatients. We enrolled 1300 inpatients aged 60 years or above from the department of geriatrics of the First Affiliated Hospital of Chongqing Medical University during 2013 to 2017. The model for cognitive impairment was established in the developing cohort of 1100 participants and tested in another validating cohort of 200 participants. Logistic regression analyses were used to identify the candidate variables of cognitive impairment. Receiver operating curve was adopted to validate the model. Logistic regression analyses showed that increasing age, diabetes, depression and low educational level were independently associated with cognitive impairment. The model was generated in the following way: P = e/(1 + e), where y = -6.874 + 0.088 * age + 0.317 * diabetes + 0.647 * depression + 0.345 * education level. The value of P indicates the probability of cognitive impairment for each patient. The present model proved to be a reliable marker for identifying people at high risk of cognitive impairment (area under curve = 0.790, 95% CI = 0.728-0.852, p < 0.001). It had a high sensitivity (86.2%) but a relatively low specificity (59.4%). It may be helpful to "recognize" those at high risk of cognitive impairment rather than "rule out" those at low risk of this disease.

摘要

早期诊断认知障碍很重要但也很困难。预测模型可以作为一种有效的方法来识别这种疾病的高危个体。本研究旨在开发一种简单方便的模型,以识别中国老年住院患者认知障碍的高危个体。我们纳入了 2013 年至 2017 年期间来自重庆医科大学第一附属医院老年科的 1300 名 60 岁及以上的住院患者。在 1100 名参与者的发展队列中建立了认知障碍模型,并在另一个 200 名参与者的验证队列中进行了测试。使用逻辑回归分析来确定认知障碍的候选变量。采用受试者工作特征曲线验证模型。逻辑回归分析表明,年龄增长、糖尿病、抑郁和低教育程度与认知障碍独立相关。该模型的生成方式如下:P=e/(1+e),其中 y=-6.874+0.088年龄+0.317糖尿病+0.647抑郁+0.345教育程度。P 的值表示每位患者认知障碍的概率。该模型被证明是识别认知障碍高危人群的可靠标志物(曲线下面积=0.790,95%置信区间=0.728-0.852,p<0.001)。它具有较高的敏感性(86.2%),但特异性相对较低(59.4%)。它可能有助于“识别”那些认知障碍高危人群,而不是“排除”那些低危人群。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验