Suppr超能文献

残疾老年人认知障碍预测模型:一项开发与验证研究。

Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study.

作者信息

Cui Xiangyu, Zheng Xiaoyu, Lu Yun

机构信息

School of International Pharmaceutical Business, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China.

出版信息

Healthcare (Basel). 2024 May 15;12(10):1028. doi: 10.3390/healthcare12101028.

Abstract

Disabled older adults exhibited a higher risk for cognitive impairment. Early identification is crucial in alleviating the disease burden. This study aims to develop and validate a prediction model for identifying cognitive impairment among disabled older adults. A total of 2138, 501, and 746 participants were included in the development set and two external validation sets. Logistic regression, support vector machine, random forest, and XGBoost were introduced to develop the prediction model. A nomogram was further established to demonstrate the prediction model directly and vividly. Logistic regression exhibited better predictive performance on the test set with an area under the curve of 0.875. It maintained a high level of precision (0.808), specification (0.788), sensitivity (0.770), and F1-score (0.788) compared with the machine learning models. We further simplified and established a nomogram based on the logistic regression, comprising five variables: age, daily living activities, instrumental activity of daily living, hearing impairment, and visual impairment. The areas under the curve of the nomogram were 0.871, 0.825, and 0.863 in the internal and two external validation sets, respectively. This nomogram effectively identifies the risk of cognitive impairment in disabled older adults.

摘要

残疾老年人出现认知障碍的风险更高。早期识别对于减轻疾病负担至关重要。本研究旨在开发并验证一种用于识别残疾老年人认知障碍的预测模型。开发集和两个外部验证集共纳入了2138名、501名和746名参与者。引入逻辑回归、支持向量机、随机森林和XGBoost来开发预测模型。进一步建立了列线图以直接且直观地展示预测模型。逻辑回归在测试集上表现出更好的预测性能,曲线下面积为0.875。与机器学习模型相比,它保持了较高水平的精准度(0.808)、特异度(0.788)、灵敏度(0.770)和F1分数(0.788)。我们进一步基于逻辑回归简化并建立了一个列线图,其包含五个变量:年龄、日常生活活动能力、工具性日常生活活动能力、听力障碍和视力障碍。该列线图在内部验证集和两个外部验证集中的曲线下面积分别为0.871、0.825和0.863。此列线图可有效识别残疾老年人认知障碍的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff43/11121056/29e7dc5c2ac3/healthcare-12-01028-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验