He Bowen, Wang Zhongliao, Xiao Peng, Chen Tao, Yu Jiaguo, Zhang Liuyang
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Adv Mater. 2022 Sep;34(38):e2203225. doi: 10.1002/adma.202203225. Epub 2022 Aug 22.
Cooperative coupling of photocatalytic H O production with organic synthesis has an expansive perspective in converting solar energy into storable chemical energy. However, traditional powder photocatalysts suffer from severe agglomeration, limited light absorption, poor gas reactant accessibility, and reusable difficulty, which greatly hinders their large-scale application. Herein, floatable composite photocatalysts are synthesized by immobilizing hydrophobic TiO and Bi O on lightweight polystyrene (PS) spheres via hydrothermal and photodeposition methods. The floatable photocatalysts are not only solar transparent, but also upgrade the contact between reactants and photocatalysts. Thus, the floatable step-scheme (S-scheme) TiO /Bi O photocatalyst exhibits a drastically enhanced H O yield of 1.15 mm h and decent furfuryl alcohol conversion to furoic acid synchronously. Furthermore, the S-scheme mechanism and dynamics are systematically investigated by in situ irradiated X-ray photoelectron spectroscopy and femtosecond transient absorption spectrum analyses. In situ Fourier transform infrared spectroscopy and density functional theory calculations reveal the mechanism of furoic acid evolution. The ingenious design of floatable photocatalysts not only furnishes insight into maximizing photocatalytic reaction kinetics but also provides a new route for highly efficient heterogeneous catalysis.
光催化产氢与有机合成的协同耦合在将太阳能转化为可储存化学能方面具有广阔的前景。然而,传统的粉末光催化剂存在严重的团聚、有限的光吸收、较差的气体反应物可及性和难以重复使用等问题,这极大地阻碍了它们的大规模应用。在此,通过水热和光沉积方法将疏水性的TiO和BiO固定在轻质聚苯乙烯(PS)球上,合成了可漂浮的复合光催化剂。这种可漂浮的光催化剂不仅对太阳能透明,还改善了反应物与光催化剂之间的接触。因此,可漂浮的阶梯式(S型)TiO/BiO光催化剂表现出大幅提高的产氢速率,达到1.15 mmol h,同时糠醇转化为糠酸的转化率也相当可观。此外,通过原位辐照X射线光电子能谱和飞秒瞬态吸收光谱分析系统地研究了S型机理和动力学。原位傅里叶变换红外光谱和密度泛函理论计算揭示了糠酸生成的机理。可漂浮光催化剂的巧妙设计不仅为最大化光催化反应动力学提供了见解,还为高效多相催化提供了一条新途径。