Xia Chunhong, Yuan Ling, Song Hao, Zhang Chaoqi, Li Zimeng, Zou Yingying, Li Jiaxin, Bao Tong, Yu Chengzhong, Liu Chao
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China.
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
Small. 2023 Jul;19(29):e2300292. doi: 10.1002/smll.202300292. Epub 2023 Apr 8.
Photocatalytic oxygen reduction reaction (ORR) for H O production in the absence of sacrificing agents is a green approach and of great significance, where the design of photocatalysts with high performance is the central task. Herein, a spatial specific S-scheme heterojunction design by introducing a novel semiconducting pair with a S-scheme mechanism in a purpose-designed Janus core-shell-structured hollow morphology is reported. In this design, TiO nanocrystals are grown inside the inner wall of resorcinol-formaldehyde (RF) resin hollow nanocakes with a reverse bumpy ball morphology (TiO @RF). The S-scheme heterojunction preserves the high redox ability of the TiO and RF pair, the spatial specific Janus design enhances the charge separation, promotes active site exposure, and reduces the H O decomposition to a large extent. The TiO @RF photocatalyst shows a high H O yield of 66.6 mM g h and solar-to-chemical conversion efficiency of 1.11%, superior to another Janus structure (RF@TiO ) with the same heterojunction but a reversed Janus spatial arrangement, and most reported photocatalysts under similar reaction conditions. The work has paved the way toward the design of next-generation photocatalysts for green synthesis of H O production.
在无牺牲剂条件下通过光催化氧还原反应(ORR)制备过氧化氢是一种绿色方法且具有重要意义,其中高性能光催化剂的设计是核心任务。在此,报道了一种空间特异性S型异质结设计,即在特意设计的具有双面核壳结构的中空形貌中引入具有S型机制的新型半导体对。在该设计中,TiO纳米晶体生长在具有反向凹凸球形貌的间苯二酚 - 甲醛(RF)树脂中空纳米饼的内壁内(TiO@RF)。S型异质结保留了TiO和RF对的高氧化还原能力,空间特异性双面设计增强了电荷分离,促进了活性位点暴露,并在很大程度上减少了过氧化氢的分解。TiO@RF光催化剂显示出66.6 mM g h的高过氧化氢产率和1.11%的太阳能到化学能转换效率,优于具有相同异质结但双面空间排列相反的另一种双面结构(RF@TiO)以及在类似反应条件下报道的大多数光催化剂。该工作为用于绿色合成过氧化氢的下一代光催化剂的设计铺平了道路。