Department of Chemistry, Inha University, 100 Inharo, Incheon 22212, Republic of Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin 445-701, South Korea.
Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.
Sci Total Environ. 2022 Nov 25;849:157805. doi: 10.1016/j.scitotenv.2022.157805. Epub 2022 Aug 6.
Constrained by the extortionately expensive carbon sources, low carbon yields, inadequate adsorption capacities, and corrosive chemical activating agents, the commercialization of carbonaceous CO adsorbents remains a challenging task. Herein, potassium oxalate (KCO), an activating agent with less corrosive properties, was used for the synthesis of activated carbons from inexhaustibly available "orange peel biowaste." For the first time, a comprehensive report is presented on the effect of hydrothermal treatment, hydrochar/KCO ratio, activation temperature, and melamine modification in tailoring the porosity and surface functionalization of activated carbons. The optimized sample, OPMK-900, exhibited large specific surface area 2130 m/g; micropore volume ~1.1166 cm/g, and a high pyrrolic nitrogen content ( 46.1 %). Notably, melamine played the dual role as a promoter to KCO porosity generation and a nitrogen dopant, which synergistically led to an efficient CO uptake of ~6.67 mmol/g at 273 K/ 1 bar via micropore-filling mechanism and Lewis acid-base interactions. Moreover, remarkably high IAST CO/N selectivity (105 at 273 K and 96 at 298 K) surpasses most of the biomass-derived carbons. Furthermore, the moderately high isosteric heat of adsorption (∆H ~ 38.9 kJ/mol) revealed the physisorption mechanism of adsorption with a limited energy requirement for the regeneration of the spent adsorbents.
受昂贵的碳源、低碳产率、不足的吸附容量和腐蚀性化学活化剂的限制,碳质 CO 吸附剂的商业化仍然是一项具有挑战性的任务。在此,使用腐蚀性较小的草酸钾(KCO)作为活化剂,从取之不尽的“橙皮生物废料”合成了活性炭。本文首次全面报道了水热处理、水热炭/KCO 比、活化温度和三聚氰胺改性对活性炭孔隙率和表面官能团的影响。优化后的样品 OPMK-900 表现出大的比表面积(2130 m/g)、微孔体积(1.1166 cm/g)和高吡咯氮含量(46.1%)。值得注意的是,三聚氰胺不仅起到促进 KCO 生成多孔性和氮掺杂的双重作用,而且协同作用导致在 273 K/1 bar 下通过微孔填充机制和路易斯酸碱相互作用对 CO 的高效吸附(6.67 mmol/g)。此外,高的 IAST CO/N 选择性(273 K 时为 105,298 K 时为 96)超过了大多数生物质衍生碳。此外,适度高的等吸附热(∆H~38.9 kJ/mol)表明吸附是物理吸附机制,对再生废吸附剂的能量要求有限。