Suppr超能文献

虾壳生物废料用于环境修复的价值提升:二氧化碳吸附与分离的高效竞争者

Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO adsorption and separation.

作者信息

Nazir Ghazanfar, Rehman Adeela, Park Soo-Jin

机构信息

Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.

Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.

出版信息

J Environ Manage. 2021 Dec 1;299:113661. doi: 10.1016/j.jenvman.2021.113661. Epub 2021 Sep 1.

Abstract

Over the years, single heteroatom-doped biowaste-derived activated carbons were studied for effective CO adsorption. However, binary or ternary heteroatoms-doping is equally important and could significantly affect the CO adsorption and flue gas (i.e., CO/N) separation. Herein, for the first time, shrimp shell-derived chitosan was used to design a series of ternary (N, S, O)-doped hierarchically porous carbons. The resultant carbons exhibit a large specific surface area (up to 2095 m/g), micropore volume (up to 1.2647 cm/g), and high heteroatoms content i.e., N up to 4.1 at. %, S up to 4.6 at. %, and O up to 13.4 at. %. Consequently, high CO uptake of 236.80 mg/g at 273 K/1 bar and an excellent CO/N gas selectivity (84.3) was observed, attributed to the synergistic role of narrow micropores (<1 nm) and optimum heteroatom content. Furthermore, the stable CO adsorption-desorption cyclic behavior under flue gas conditions i.e., 15% CO/85% N reveals the physisorption mechanism of CO adsorption and appears to be an energy-efficient regeneration process. Concluding, our work demonstrates a facile route of valorization of biowaste for environmental remediation to combat biowaste accumulation and mitigating atmospheric CO levels, simultaneously.

摘要

多年来,人们对单杂原子掺杂的生物废弃物衍生活性炭进行了研究,以实现有效的CO吸附。然而,二元或三元杂原子掺杂同样重要,并且会显著影响CO吸附和烟气(即CO/N)分离。在此,首次使用虾壳衍生的壳聚糖设计了一系列三元(N、S、O)掺杂的分级多孔碳。所得碳材料具有大的比表面积(高达2095 m/g)、微孔体积(高达1.2647 cm/g)以及高的杂原子含量,即N高达4.1 at. %、S高达4.6 at. %、O高达13.4 at. %。因此,在273 K/1 bar下观察到236.80 mg/g的高CO吸附量以及优异的CO/N气体选择性(84.3),这归因于窄微孔(<1 nm)和最佳杂原子含量的协同作用。此外,在烟气条件即15% CO/85% N下稳定的CO吸附-脱附循环行为揭示了CO吸附的物理吸附机制,并且似乎是一个节能的再生过程。总之,我们的工作展示了一种将生物废弃物资源化用于环境修复的简便途径,既能对抗生物废弃物积累,又能同时降低大气中的CO水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验