Suppr超能文献

带主动屏蔽的轻型磁屏蔽室。

A lightweight magnetically shielded room with active shielding.

机构信息

Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.

Magnetic Shields Limited, Headcorn Road, Staplehurst, Tonbridge, Kent, TN12 0DS, UK.

出版信息

Sci Rep. 2022 Aug 9;12(1):13561. doi: 10.1038/s41598-022-17346-1.

Abstract

Magnetically shielded rooms (MSRs) use multiple layers of materials such as MuMetal to screen external magnetic fields that would otherwise interfere with high precision magnetic field measurements such as magnetoencephalography (MEG). Optically pumped magnetometers (OPMs) have enabled the development of wearable MEG systems which have the potential to provide a motion tolerant functional brain imaging system with high spatiotemporal resolution. Despite significant promise, OPMs impose stringent magnetic shielding requirements, operating around a zero magnetic field resonance within a dynamic range of ± 5 nT. MSRs developed for OPM-MEG must therefore effectively shield external sources and provide a low remnant magnetic field inside the enclosure. Existing MSRs optimised for OPM-MEG are expensive, heavy, and difficult to site. Electromagnetic coils are used to further cancel the remnant field inside the MSR enabling participant movements during OPM-MEG, but present coil systems are challenging to engineer and occupy space in the MSR limiting participant movements and negatively impacting patient experience. Here we present a lightweight MSR design (30% reduction in weight and 40-60% reduction in external dimensions compared to a standard OPM-optimised MSR) which takes significant steps towards addressing these barriers. We also designed a 'window coil' active shielding system, featuring a series of simple rectangular coils placed directly onto the walls of the MSR. By mapping the remnant magnetic field inside the MSR, and the magnetic field produced by the coils, we can identify optimal coil currents and cancel the remnant magnetic field over the central cubic metre to just |B|= 670 ± 160 pT. These advances reduce the cost, installation time and siting restrictions of MSRs which will be essential for the widespread deployment of OPM-MEG.

摘要

磁屏蔽室(MSR)使用多层材料,如 MuMetal,来屏蔽外部磁场,否则这些磁场会干扰高精度磁场测量,如脑磁图(MEG)。光泵磁力计(OPM)的发展使可穿戴 MEG 系统成为可能,这些系统有可能提供具有高时空分辨率的运动耐受功能脑成像系统。尽管有很大的前景,但 OPM 对磁屏蔽提出了严格的要求,需要在动态范围为±5nT 的零磁场共振周围运行。因此,为 OPM-MEG 开发的 MSR 必须有效地屏蔽外部源,并在外壳内提供低残余磁场。为 OPM-MEG 优化的现有 MSR 昂贵、沉重且难以安装。电磁线圈用于进一步抵消 MSR 内的残余磁场,从而实现 OPM-MEG 期间参与者的运动,但现有的线圈系统在工程设计方面具有挑战性,并且占用了 MSR 中的空间,限制了参与者的运动并对患者体验产生负面影响。在这里,我们提出了一种轻量级 MSR 设计(与标准 OPM 优化的 MSR 相比,重量减轻了 30%,外部尺寸减小了 40-60%),这在解决这些障碍方面迈出了重要的一步。我们还设计了一种“窗口线圈”主动屏蔽系统,该系统采用一系列直接放置在 MSR 壁上的简单矩形线圈。通过绘制 MSR 内的残余磁场和线圈产生的磁场,我们可以确定最佳的线圈电流,并将中央立方米内的残余磁场降低到仅|B|=670±160pT。这些进展降低了 MSR 的成本、安装时间和选址限制,这对于 OPM-MEG 的广泛部署至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe7/9363499/37bdbdc47e8f/41598_2022_17346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验