Suppr超能文献

估计和预测哥伦比亚 SARS-CoV2 第一波的负担和传播。

Estimating and forecasting the burden and spread of Colombia's SARS-CoV2 first wave.

机构信息

Universidad de los Andes, Grupo de Biología y Matemática Computacional (BIOMAC), Bogotá D.C., 111711, Colombia.

Facultad de Medicina, Universidad de los Andes, Bogotá D.C., Colombia.

出版信息

Sci Rep. 2022 Aug 9;12(1):13568. doi: 10.1038/s41598-022-15514-x.

Abstract

Following the rapid dissemination of COVID-19 cases in Colombia in 2020, large-scale non-pharmaceutical interventions (NPIs) were implemented as national emergencies in most of the country's municipalities, starting with a lockdown on March 20th, 2020. Recently, approaches that combine movement data (measured as the number of commuters between units), metapopulation models to describe disease dynamics subdividing the population into Susceptible-Exposed-Asymptomatic-Infected-Recovered-Diseased and statistical inference algorithms have been pointed as a practical approach to both nowcast and forecast the number of cases and deaths. We used an iterated filtering (IF) framework to estimate the model transmission parameters using the reported data across 281 municipalities from March to late October in locations with more than 50 reported deaths and cases in Colombia. Since the model is high dimensional (6 state variables in every municipality), inference on those parameters is highly non-trivial, so we used an Ensemble-Adjustment-Kalman-Filter (EAKF) to estimate time variable system states and parameters. Our results show the model's ability to capture the characteristics of the outbreak in the country and provide estimates of the epidemiological parameters in time at the national level. Importantly, these estimates could become the base for planning future interventions as well as evaluating the impact of NPIs on the effective reproduction number ([Formula: see text]) and the critical epidemiological parameters, such as the contact rate or the reporting rate. However, our forecast presents some inconsistency as it overestimates the deaths for some locations as Medellín. Nevertheless, our approach demonstrates that real-time, publicly available ensemble forecasts can provide short-term predictions of reported COVID-19 deaths in Colombia. Therefore, this model can be used as a forecasting tool to evaluate disease dynamics and aid policymakers in infectious outbreak management and control.

摘要

2020 年,哥伦比亚 COVID-19 病例迅速传播,该国大部分城市都作为国家紧急情况实施了大规模的非药物干预(NPIs),从 2020 年 3 月 20 日开始封锁。最近,结合移动数据(以单位之间的通勤者数量衡量)、描述疾病动态的元种群模型将人群划分为易感-暴露-无症状-感染-恢复-患病以及统计推断算法的方法被指出是对当前和未来病例和死亡人数进行预测的实用方法。我们使用迭代滤波(IF)框架来使用报告的数据估计模型传播参数,这些数据来自哥伦比亚 281 个城市,这些城市在报告的死亡和病例超过 50 例的地区,从 3 月到 10 月底。由于模型具有高度维数(每个城市有 6 个状态变量),因此对这些参数的推断非常复杂,因此我们使用了集合调整卡尔曼滤波器(EAKF)来估计时间变量系统状态和参数。我们的结果表明,该模型能够捕捉该国疫情爆发的特征,并在全国范围内及时提供流行病学参数的估计。重要的是,这些估计可以成为未来干预计划的基础,以及评估 NPIs 对有效繁殖数([Formula: see text])和关键流行病学参数(如接触率或报告率)的影响。然而,我们的预测存在一些不一致之处,因为它高估了一些地方的死亡人数,例如麦德林。尽管如此,我们的方法表明,实时、公开的集合预测可以对哥伦比亚报告的 COVID-19 死亡人数进行短期预测。因此,该模型可用于作为评估疾病动态的预测工具,并为决策者在传染病爆发管理和控制方面提供帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4553/9427755/dc4e013f2695/41598_2022_15514_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验