Suppr超能文献

利用包含跨境通勤和航空旅行的泛种群模型预测欧洲的流感。

Forecasting influenza in Europe using a metapopulation model incorporating cross-border commuting and air travel.

机构信息

Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America.

出版信息

PLoS Comput Biol. 2020 Oct 14;16(10):e1008233. doi: 10.1371/journal.pcbi.1008233. eCollection 2020 Oct.

Abstract

Past work has shown that models incorporating human travel can improve the quality of influenza forecasts. Here, we develop and validate a metapopulation model of twelve European countries, in which international translocation of virus is driven by observed commuting and air travel flows, and use this model to generate influenza forecasts in conjunction with incidence data from the World Health Organization. We find that, although the metapopulation model fits the data well, it offers no improvement over isolated models in forecast quality. We discuss several potential reasons for these results. In particular, we note the need for data that are more comparable from country to country, and offer suggestions as to how surveillance systems might be improved to achieve this goal.

摘要

过去的研究表明,纳入人类旅行的模型可以提高流感预测的质量。在这里,我们开发并验证了一个包含十二个欧洲国家的人口迁移模型,其中病毒的国际转移是由观察到的通勤和航空旅行流量驱动的,并结合世界卫生组织的发病率数据使用该模型生成流感预测。我们发现,尽管人口迁移模型很好地拟合了数据,但它在预测质量方面并没有比孤立模型有所提高。我们讨论了这些结果的几个潜在原因。特别是,我们注意到需要更具国家间可比性的数据,并就如何改进监测系统以实现这一目标提出了建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aac/7588111/e3f398c82d9e/pcbi.1008233.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验