Suppr超能文献

一项单中心回顾性研究,旨在确定鉴别结直肠癌与结直肠腺瘤患者的血液学因素。

A Retrospective Study from a Single Center to Identify Hematological Factors that Distinguish Between Patients with Colorectal Carcinoma and Colorectal Adenoma.

机构信息

Nanchang University, Nanchang, Jiangxi, China (mainland).

Department of Digestive Endoscopy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China (mainland).

出版信息

Med Sci Monit. 2022 Aug 10;28:e936745. doi: 10.12659/MSM.936745.

Abstract

BACKGROUND This retrospective study from a single center in China was conducted using data from medical records between 2012 and 2020, to identify hematological factors that distinguish between patients with colorectal carcinoma (CRC) and colorectal adenoma. MATERIAL AND METHODS In this case-control study, 856 eligible patients were randomly divided into a training set (n=600) and a testing set (n=256). Routine blood parameters, blood coagulation, and liver and kidney function parameters were collected. Univariate and multivariate Cox regression analyses were used to explore diagnostic indicators. The values of the area under the curve and calibration curves were used to evaluate the model. RESULTS The study included 325 colorectal adenoma and 531 CRC patients. The prediction model for diagnosing CRC using hemoglobin-to-platelet ratio, fibrinogen-albumin ratio (FAR), albumin-globulin ratio (A/G), platelet-lymphocyte ratio, carcinoembryonic antigen (CEA), and thrombin time (TT) was developed on the basis of the patients grouped into the CRC and colorectal adenoma groups. The prediction model for diagnosing CRC stage was developed using prothrombin time (PT), TT, CEA, A/G, FAR, and HPR. The prediction model for diagnosing CRC grade was developed using PT, TT, A/G, plateletcrit, FAR, and HPR. The AUCs of the 3 prediction models were [0.848, 95% CI: (0.800-0.896)], [0.806, 95% CI: (0.775-0.836)], and [0.829, 95% CI: (0.797-0.860)] in the testing set. CONCLUSIONS Three diagnostic prediction models for early screening of CRC, stage of CRC, and grade of CRC were established through a panel of readily available hematological parameters, which could provide auxiliary tools for early screening of CRC.

摘要

背景

本研究回顾性分析了 2012 年至 2020 年中国某单中心的病历资料,旨在确定区分结直肠癌(CRC)和结直肠腺瘤患者的血液学因素。

材料和方法

在这项病例对照研究中,856 名合格患者被随机分为训练集(n=600)和测试集(n=256)。收集了常规血液参数、凝血和肝肾功能参数。采用单因素和多因素 Cox 回归分析探讨诊断指标。采用曲线下面积和校准曲线的值来评估模型。

结果

本研究纳入了 325 例结直肠腺瘤和 531 例 CRC 患者。根据将患者分为 CRC 和结直肠腺瘤组的血红蛋白/血小板比、纤维蛋白原/白蛋白比(FAR)、白蛋白/球蛋白比(A/G)、血小板/淋巴细胞比、癌胚抗原(CEA)和凝血酶时间(TT)建立了诊断 CRC 的预测模型。基于凝血酶原时间(PT)、TT、CEA、A/G、FAR 和 HPR 建立了诊断 CRC 分期的预测模型。基于 PT、TT、A/G、血小板比容、FAR 和 HPR 建立了诊断 CRC 分级的预测模型。这 3 个预测模型在测试集中的 AUC 值分别为 [0.848,95%CI:(0.800-0.896)]、[0.806,95%CI:(0.775-0.836)]和[0.829,95%CI:(0.797-0.860)]。

结论

通过一组易于获得的血液学参数建立了用于早期筛查 CRC、CRC 分期和 CRC 分级的三个诊断预测模型,可为 CRC 的早期筛查提供辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验