Suppr超能文献

《系统发育基因组学研究设计与评估实用指南》

A Practical Guide to Design and Assess a Phylogenomic Study.

机构信息

Department of Genetics, Microbiology and Statistics, Biodiversity Research Institute (IRBio), University of Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain.

Institute of Evolutionary Biology (CSIC - Universitat Pompeu Fabra), Passeig marítim de la Barcelona 37-49, 08003 Barcelona, Spain.

出版信息

Genome Biol Evol. 2022 Sep 6;14(9). doi: 10.1093/gbe/evac129.

Abstract

Over the last decade, molecular systematics has undergone a change of paradigm as high-throughput sequencing now makes it possible to reconstruct evolutionary relationships using genome-scale datasets. The advent of "big data" molecular phylogenetics provided a battery of new tools for biologists but simultaneously brought new methodological challenges. The increase in analytical complexity comes at the price of highly specific training in computational biology and molecular phylogenetics, resulting very often in a polarized accumulation of knowledge (technical on one side and biological on the other). Interpreting the robustness of genome-scale phylogenetic studies is not straightforward, particularly as new methodological developments have consistently shown that the general belief of "more genes, more robustness" often does not apply, and because there is a range of systematic errors that plague phylogenomic investigations. This is particularly problematic because phylogenomic studies are highly heterogeneous in their methodology, and best practices are often not clearly defined. The main aim of this article is to present what I consider as the ten most important points to take into consideration when planning a well-thought-out phylogenomic study and while evaluating the quality of published papers. The goal is to provide a practical step-by-step guide that can be easily followed by nonexperts and phylogenomic novices in order to assess the technical robustness of phylogenomic studies or improve the experimental design of a project.

摘要

在过去的十年中,随着高通量测序使得利用基因组规模数据集重建进化关系成为可能,分子系统学经历了范式的转变。“大数据”分子系统学的出现为生物学家提供了一系列新工具,但同时也带来了新的方法学挑战。分析复杂性的增加是以对计算生物学和分子系统学的高度专业化培训为代价的,这往往导致知识的两极分化(一方面是技术,另一方面是生物学)。解释基因组规模系统发育研究的稳健性并不简单,特别是因为新的方法学发展一直表明,“更多基因,更稳健”的普遍信念往往不适用,并且存在一系列困扰系统发育基因组学研究的系统性错误。这是一个特别的问题,因为基因组系统发育研究在方法上高度多样化,最佳实践往往没有明确界定。本文的主要目的是提出我认为在规划深思熟虑的基因组系统发育研究和评估已发表论文的质量时应考虑的十个最重要的要点。目标是提供一个实用的分步指南,供非专业人士和基因组系统发育新手轻松遵循,以评估基因组系统发育研究的技术稳健性或改进项目的实验设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b0/9452790/417fbe2a1db9/evac129f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验