University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße NW2, D-28359, Bremen, Germany.
Organic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
Chemphyschem. 2022 Dec 5;23(23):e202200414. doi: 10.1002/cphc.202200414. Epub 2022 Sep 12.
When calculating structural or spectroscopic properties of molecular crystals, the question arises whether it is sufficient to simulate only a single molecule or a small molecular cluster or whether the simulation of the entire crystal is indispensable. In this work we juxtapose calculations on the high-pressure structural properties of the (periodic) HCN crystal and chains of HCN molecules of finite length. We find that, in most cases, the behavior of the crystal can be reproduced by computational methods simulating only around 15 molecules. The pressure-induced lengthening of the C-H bond in HCN found in calculations on both the periodic and finite material are explained in terms of orbital interaction. Our results pave the way for a more thorough understanding of high-pressure structural properties of materials and give incentives for the design of materials that expand under pressure. In addition, they shed light on the complementarity between calculations on periodic materials and systems of finite size.
在计算分子晶体的结构或光谱性质时,会出现这样的问题:是否只需要模拟单个分子或小的分子簇,或者是否必须对整个晶体进行模拟。在这项工作中,我们对比了(周期性)HCN 晶体的高压结构性质以及有限长度 HCN 分子链的计算。我们发现,在大多数情况下,仅通过模拟大约 15 个分子的计算方法就可以再现晶体的行为。在周期性和有限材料的计算中都发现,HCN 中 C-H 键在压力下的延长可以用轨道相互作用来解释。我们的结果为更深入地了解材料的高压结构性质铺平了道路,并为在压力下膨胀的材料的设计提供了动力。此外,它们还揭示了周期性材料计算和有限尺寸系统之间的互补性。