Zaverkin Viktor, Holzmüller David, Schuldt Robin, Kästner Johannes
Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
Institute for Stochastics and Applications, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
J Chem Phys. 2022 Mar 21;156(11):114103. doi: 10.1063/5.0078983.
The accuracy of the training data limits the accuracy of bulk properties from machine-learned potentials. For example, hybrid functionals or wave-function-based quantum chemical methods are readily available for cluster data but effectively out of scope for periodic structures. We show that local, atom-centered descriptors for machine-learned potentials enable the prediction of bulk properties from cluster model training data, agreeing reasonably well with predictions from bulk training data. We demonstrate such transferability by studying structural and dynamical properties of bulk liquid water with density functional theory and have found an excellent agreement with experimental and theoretical counterparts.
训练数据的准确性限制了机器学习势所预测的体相性质的准确性。例如,混合泛函或基于波函数的量子化学方法很容易用于团簇数据,但实际上不适用于周期性结构。我们表明,用于机器学习势的局部、以原子为中心的描述符能够根据团簇模型训练数据预测体相性质,与来自体相训练数据的预测相当吻合。我们通过用密度泛函理论研究体相液态水的结构和动力学性质来证明这种可转移性,并发现与实验和理论结果非常吻合。