Zhao Shuang, Riedel Marc, Patarroyo Javier, Bastús Neus G, Puntes Victor, Yue Zhao, Lisdat Fred, Parak Wolfgang J
Fachbereich Physik, CHyN, Universität Hamburg, 22761 Hamburg, Germany.
Biosystems Technology, Institute of Life Sciences and Biomedical Technologies, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany.
Nanoscale. 2022 Aug 25;14(33):12048-12059. doi: 10.1039/d2nr01318e.
The present study investigates basic features of a photoelectrochemical system based on CeO nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.
本研究调查了基于固定在金电极上的CeO纳米颗粒的光电化学系统的基本特征。由于光电流的产生仅限于CeO在紫外范围内的吸收范围,因此研究了其与金属纳米颗粒的组合。结果表明,银纳米颗粒与CeO的组合可将激发范围转移到可见光波长范围。在此发现两种组分之间的紧密接触至关重要,因此制备并分析了杂化CeO@Ag纳米颗粒。我们已经收集到证据表明在杂化纳米颗粒的两种组成元素之间发生了电子转移。基于金属纳米颗粒中表面等离子体激元激发必要性的能量图,可以解释光电流的产生,波长依赖的光电流测量也支持这一点。然而,电化学反应似乎发生在CeO表面,因此,这种材料的催化性能可以通过过氧化氢的光电化学还原得到例证。可以进一步证明,可以利用逐层技术在金电极顶部创建多层系统,从而可以调节光电化学系统的灵敏度。因此,使用具有杂化CeO@Ag纳米颗粒的五层电极可以检测到亚微摩尔浓度的过氧化氢。