Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064 China.
Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States.
Biomacromolecules. 2022 Sep 12;23(9):3663-3677. doi: 10.1021/acs.biomac.2c00550. Epub 2022 Aug 10.
Higher plants synthesize cellulose using membrane-bound, six-lobed cellulose synthase complexes, each lobe containing trimeric cellulose synthases (CESAs). Although molecular biology reports support heteromeric trimers composed of different isoforms, a homomeric trimer was reported for in vitro studies of the catalytic domain of CESA1 of (AtCESA1CatD) and confirmed in cryoEM structures of full-length CESA8 and CESA7 of poplar and cotton, respectively. In both structures, a small portion of the plant-conserved region (P-CR) forms the only contacts between catalytic domains of the monomers. We report inter-subunit lysine-crosslinks that localize to the small P-CR, negative-stain EM structure, and modeling data for homotrimers of AtCESA1CatD. Molecular dynamics simulations for AtCESA1CatD trimers based on the CESA8 cryoEM structure were stable and dependent upon a small set of residue contacts. The results suggest that homomeric CESA trimers may be important for the synthesis of primary and secondary cell walls and identify key residues for future mutagenic studies.
高等植物使用膜结合的六叶状纤维素合酶复合物合成纤维素,每个叶状结构包含三聚体纤维素合酶(CESAs)。尽管分子生物学报告支持由不同同工型组成的异源三聚体,但在体外研究拟南芥纤维素合酶 1 的催化结构域(AtCESA1CatD)时报告了同源三聚体,并在杨树和棉花全长 CESA8 和 CESA7 的 cryoEM 结构中得到了证实。在这两种结构中,植物保守区域(P-CR)的一小部分形成单体催化结构域之间的唯一接触。我们报告了位于小 P-CR、负染 EM 结构和 AtCESA1CatD 同源三聚体建模数据之间的亚基间赖氨酸交联。基于 CESA8 cryoEM 结构的 AtCESA1CatD 三聚体的分子动力学模拟是稳定的,并且依赖于一小部分残基接触。结果表明,同源 CESA 三聚体可能对初生壁和次生壁的合成很重要,并确定了未来诱变研究的关键残基。