Department of Biology, Stanford University, Stanford, California 94305, USA.
Plant Physiol. 2012 Oct;160(2):726-37. doi: 10.1104/pp.112.199208. Epub 2012 Aug 27.
In higher plants, cellulose is synthesized by so-called rosette protein complexes with cellulose synthases (CESAs) as catalytic subunits of the complex. The CESAs are divided into two distinct families, three of which are thought to be specialized for the primary cell wall and three for the secondary cell wall. In this article, the potential of primary and secondary CESAs forming a functional rosette complex has been investigated. The membrane-based yeast two-hybrid and biomolecular fluorescence systems were used to assess the interactions between three primary (CESA1, CESA3, CESA6), and three secondary (CESA4, CESA7, CESA8) Arabidopsis (Arabidopsis thaliana) CESAs. The results showed that all primary CESAs can physically interact both in vitro and in planta with all secondary CESAs. Although CESAs are broadly capable of interacting in pairwise combinations, they are not all able to form functional complexes in planta. Analysis of transgenic lines showed that CESA7 can partially rescue defects in the primary cell wall biosynthesis in a weak cesa3 mutant. Green fluorescent protein-CESA protein fusions revealed that when CESA3 was replaced by CESA7 in the primary rosette, the velocity of the mixed complexes was slightly faster than the native primary complexes. CESA1 in turn can partly rescue defects in secondary cell wall biosynthesis in a cesa8ko mutant, resulting in an increase of cellulose content relative to cesa8ko. These results demonstrate that sufficient parallels exist between the primary and secondary complexes for cross-functionality and open the possibility that mixed complexes of primary and secondary CESAs may occur at particular times.
在高等植物中,纤维素是由所谓的带有纤维素合酶(CESAs)的轮状蛋白复合物合成的,CESAs 作为复合物的催化亚基。CESAs 分为两个截然不同的家族,其中三个被认为是专门用于初生细胞壁的,三个用于次生细胞壁。在本文中,研究了初生和次生 CESAs 形成功能性轮状复合物的潜力。使用基于膜的酵母双杂交和生物荧光系统来评估三种初生(CESA1、CESA3、CESA6)和三种次生(CESA4、CESA7、CESA8)拟南芥(Arabidopsis thaliana)CESAs 之间的相互作用。结果表明,所有初生 CESAs 都可以在体外和体内与所有次生 CESAs 进行物理相互作用。尽管 CESAs 广泛地能够以两两组合的形式相互作用,但它们并非都能够在体内形成功能性复合物。对转基因系的分析表明,CESA7 可以在弱 cesa3 突变体中部分挽救初生细胞壁生物合成的缺陷。绿色荧光蛋白-CESA 蛋白融合显示,当 CESA3 被 CESA7 取代初生轮状复合物时,混合复合物的速度比原生初生复合物稍快。反过来,CESA1 可以在 cesa8ko 突变体中部分挽救次生细胞壁生物合成的缺陷,导致相对于 cesa8ko 的纤维素含量增加。这些结果表明,初生和次生复合物之间存在足够的相似性,以实现交叉功能,并为初生和次生 CESAs 混合复合物可能在特定时间出现的可能性开辟了道路。