Suppr超能文献

生物刺激微碎纳米纤维-水凝胶复合材料可改善间充质干细胞递送和软组织重塑。

Biostimulatory Micro-Fragmented Nanofiber-Hydrogel Composite Improves Mesenchymal Stem Cell Delivery and Soft Tissue Remodeling.

机构信息

Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21213, USA.

出版信息

Small. 2022 Sep;18(36):e2202309. doi: 10.1002/smll.202202309. Epub 2022 Aug 10.

Abstract

Functional microgels are preferred stem cell carriers due to the ease of delivery through minimally invasive injection and seamless integration with the surrounding host tissue. A biostimulatory nanofiber-hydrogel composite (NHC) has been previously developed through covalently crosslinking a hyaluronic acid hydrogel network with surface-functionalized poly (ε-caprolactone) nanofiber fragments. The NHC mimics the microarchitecture of native soft tissue matrix, showing enhanced cell infiltration, immunomodulation, and proangiogenic properties. Here, injectability of the pre-formed NHC is improved by mechanical fragmentation, making it into micro-fragmented NHC (mfNHC) in a granular gel form as a stem cell carrier to deliver mesenchymal stem cells (MSCs) for soft tissue remodeling. The mfNHC shows a similar storage modulus but a significantly reduced injection force, as compared with the corresponding bulk NHC. When injected subcutaneously in a rat model, mfNHC-MSC constructs initiate an elevated level of host macrophage infiltration, more pro-regenerative polarization, and subsequently, improved angiogenesis and adipogenesis response when compared to mfNHC alone. A similar trend of host cell infiltration and pro-angiogenic response is detected in a swine model with a larger volume injection. These results suggest a strong potential for use of the mfNHC as an injectable carrier for cell delivery and soft tissue remodeling.

摘要

功能微凝胶因其可通过微创注射轻松输送,并且与周围宿主组织无缝整合而成为首选的干细胞载体。先前已经通过将透明质酸水凝胶网络与表面官能化的聚(ε-己内酯)纳米纤维片段共价交联来开发生物刺激纳米纤维-水凝胶复合材料(NHC)。NHC 模拟了天然软组织基质的微观结构,表现出增强的细胞浸润、免疫调节和促血管生成特性。在这里,通过机械破碎提高了预形成的 NHC 的可注射性,使其成为颗粒状凝胶形式的微碎片化 NHC(mfNHC),用作干细胞载体来递送间充质干细胞(MSCs)以进行软组织重塑。与相应的块状 NHC 相比,mfNHC 显示出相似的储能模量,但注射力显著降低。当在大鼠模型中皮下注射时,与 mfNHC 单独使用相比,mfNHC-MSC 构建体引发高水平的宿主巨噬细胞浸润、更多的促再生极化,随后改善了血管生成和脂肪生成反应。在体积较大的注射猪模型中,也检测到宿主细胞浸润和促血管生成反应的相似趋势。这些结果表明 mfNHC 作为用于细胞递送和软组织重塑的可注射载体具有很大的应用潜力。

相似文献

2
Nanofiber-hydrogel composite-mediated angiogenesis for soft tissue reconstruction.
Sci Transl Med. 2019 May 1;11(490). doi: 10.1126/scitranslmed.aau6210.
3
Tissue Engineering of Axially Vascularized Soft-Tissue Flaps with a Poly-(ɛ-Caprolactone) Nanofiber-Hydrogel Composite.
Adv Wound Care (New Rochelle). 2020 Jul 1;9(7):365-377. doi: 10.1089/wound.2019.0975. Epub 2020 Jun 10.
5
Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.
Nanotechnology. 2012 Mar 9;23(9):095705. doi: 10.1088/0957-4484/23/9/095705. Epub 2012 Feb 10.
7
Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.
Acta Biomater. 2010 Jun;6(6):1978-91. doi: 10.1016/j.actbio.2009.12.011. Epub 2009 Dec 23.
9
Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels.
Acta Biomater. 2015 Oct;26:23-33. doi: 10.1016/j.actbio.2015.08.010. Epub 2015 Aug 12.
10
Injectable MSC Spheroid and Microgel Granular Composites for Engineering Tissue.
Adv Mater. 2024 Apr;36(14):e2312226. doi: 10.1002/adma.202312226. Epub 2024 Jan 4.

引用本文的文献

1
An mRNA lipid nanoparticle-incorporated nanofiber-hydrogel composite for cancer immunotherapy.
Nat Commun. 2025 Jul 1;16(1):5707. doi: 10.1038/s41467-025-61299-8.
2
Bibliometric mapping of mesenchymal stem cell therapy for bone regeneration from 2013 to 2023.
Front Med (Lausanne). 2025 Jan 6;11:1484097. doi: 10.3389/fmed.2024.1484097. eCollection 2024.
4
Granular Nanofiber-Hydrogel Composite-Programmed Regenerative Inflammation and Adipose Tissue Formation.
Adv Healthc Mater. 2025 Jan;14(3):e2403094. doi: 10.1002/adhm.202403094. Epub 2024 Nov 24.
7
In Vivo Stimulation of Therapeutic Antigen-Specific T Cells in an Artificial Lymph Node Matrix.
Adv Mater. 2024 Jun;36(23):e2310043. doi: 10.1002/adma.202310043. Epub 2024 Mar 1.
8
Granular Hydrogels for Harnessing the Immune Response.
Adv Healthc Mater. 2024 Oct;13(25):e2303005. doi: 10.1002/adhm.202303005. Epub 2024 Jan 7.
9
Hybrid biofabrication of neurosecretory structures as a model for neurosecretion.
Int J Bioprint. 2022 Dec 30;9(2):659. doi: 10.18063/ijb.v9i2.659. eCollection 2023.

本文引用的文献

1
Cyclodextrin Modulated Type I Collagen Self-Assembly to Engineer Biomimetic Cornea Implants.
Adv Funct Mater. 2018 Oct 10;28(41). doi: 10.1002/adfm.201804076. Epub 2018 Aug 17.
3
Hydrogel microparticles for biomedical applications.
Nat Rev Mater. 2020 Jan;5(1):20-43. doi: 10.1038/s41578-019-0148-6. Epub 2019 Nov 7.
4
Bio-instructive hydrogel expands the paracrine potency of mesenchymal stem cells.
Biofabrication. 2021 Jul 8;13(4). doi: 10.1088/1758-5090/ac0a32.
6
Influence of Microgel Fabrication Technique on Granular Hydrogel Properties.
ACS Biomater Sci Eng. 2021 Sep 13;7(9):4269-4281. doi: 10.1021/acsbiomaterials.0c01612. Epub 2021 Feb 16.
7
Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies.
Adv Healthc Mater. 2021 Apr;10(7):e2001689. doi: 10.1002/adhm.202001689. Epub 2021 Jan 12.
8
Hybrid 3D Printing of Synthetic and Cell-Laden Bioinks for Shape Retaining Soft Tissue Grafts.
Adv Funct Mater. 2020 Jan 17;30(3). doi: 10.1002/adfm.201907145. Epub 2019 Oct 15.
9
Extracellular matrix compression temporally regulates microvascular angiogenesis.
Sci Adv. 2020 Aug 21;6(34). doi: 10.1126/sciadv.abb6351. Print 2020 Aug.
10
Injectable and Crosslinkable PLGA-Based Microribbons as 3D Macroporous Stem Cell Niche.
Small. 2020 Jun;16(22):e1905820. doi: 10.1002/smll.201905820. Epub 2020 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验